I'm going to complete Claude Leibovici's alternative approach by showing that
$$ \begin{align} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)!} \, \Gamma(2n+2-a) &= 2^{a/2-1/2} \, \Gamma(1-a) \sin \left( \tfrac{\pi}{4}(1-a) \right) \\ &= 2^{a/2-1/2} \, \Gamma(1-a) \cos \left(\tfrac{\pi}{4}(1+a) \right) \end{align}$$ for $1 <\Re(a) <2$.
We'll use the hypergeometric identity $$_{2}F_{1}\left(a, a+ \tfrac{1}{2}; \tfrac{3}{2} ;-\tan^{2}(z) \right) = \cos^{2a}(z) \, \frac{\sin \left((1-2a) z\right)}{(1-2a) \sin (z)}. $$
I'll prove this at the end.
The series representation of the above hypergeometric function converges absolutely at $z= \frac{\pi}{4}$ if $ \Re(1-2a) >0$. (See here.)
Using this identity and Legendre's duplication formula, we have
$$ \begin{align} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)!} \, \Gamma(2n+2-a) &= \sum_{n=0}^{\infty} \frac{(-1)^{n}}{\Gamma(2n+2)} \, \Gamma(2n+2-a) \\ &= \sum_{n=0}^{\infty} \frac{(-1)^{n} \, 2^{2n+1-a} \, \Gamma(n+1-\tfrac{a}{2}) \Gamma(n+\tfrac{3}{2}-\tfrac{a}{2})}{2^{2n+1}\Gamma(n+1)\Gamma(n+ \tfrac{3}{2})} \\ &= 2^{-a} \, \frac{\Gamma(1- \tfrac{a}{2}) \Gamma(\tfrac{3}{2}-\tfrac{a}{2})}{\Gamma (\tfrac{3}{2})} \, _{2}F_{1} \left(1-\tfrac{a}{2}, \tfrac{3}{2}- \tfrac{a}{2}; \tfrac{3}{2};-1 \right) \\ &= \Gamma(2-a) \, _{2}F_{1} \left(1-\tfrac{a}{2}, \tfrac{3}{2}- \tfrac{a}{2}; \tfrac{3}{2};-1 \right) \\ &= \Gamma(2-a) \, \frac{\left(\cos(\tfrac{\pi}{4})\right)^{2-a} \sin \left(\tfrac{\pi}{4}(a-1) \right)}{(a-1) \sin (\tfrac{\pi}{4})} \\ &= \Gamma(2-a) \, \frac{\left(\tfrac{1}{\sqrt{2}}\right)^{2-a} \sin \left(\tfrac{\pi}{4}(1-a) \right)}{(1-a) \, \tfrac{1}{\sqrt{2}}} \\ &= 2^{a/2-1/2} \, \Gamma(1-a)\sin \left(\tfrac{\pi}{4}(1-a) \right). \end{align}$$
Proof of hypergeometric identity:
We'll first prove the identity $$_{2}F_{1}\left(a, a+ \tfrac{1}{2}; \tfrac{3}{2};z^{2}\right) = \frac{(1-z)^{1-2a}-(1+z)^{1-2a} }{(4a-2)z}. $$
Using the generalized binomial theorem and Legendre's duplication formula, we have
$$\begin{align} \frac{(1-z)^{1-2a}-(1+z)^{1-2a} }{(4a-2)z} &= \frac{1}{(4a-2)z} \left(\sum_{n=0}^{\infty} \binom{n+2a-2}{n}z^{n} - \sum_{n=0}^{\infty} \binom{n+2a-2}{n} (-z)^{n} \right) \\ &= \frac{2}{(4a-2)z} \sum_{n=0}^{\infty} \binom{2n+2a-1}{2n
+1}z^{2n+1} \\ &= \frac{1}{2a-1} \sum_{n=0}^{\infty} \frac{\Gamma(2n+2a)}{\Gamma(2n+2) \Gamma(2a-1)} \, z^{2n} \\ &= \sum_{n=0}^{\infty} \frac{\Gamma(2n+2a)}{\Gamma(2n+2) \Gamma(2a)} \, z^{2n} \\ &= \sum_{k=0}^{\infty} \frac{\Gamma(n+a) \Gamma(n+a+\tfrac{1}{2}) \Gamma (\tfrac{1}{2})}{2 \Gamma(a) \Gamma(a+\tfrac{1}{2})\Gamma(n+ \tfrac{3}{2})} \, \frac{z^{2n}}{n!} \\ &= \sum_{k=0}^{\infty} \frac{\Gamma(n+a) \Gamma(n+a+\tfrac{1}{2}) \Gamma (\tfrac{3}{2})}{\Gamma(a) \Gamma(a+\tfrac{1}{2})\Gamma(n+ \tfrac{3}{2})} \, \frac{z^{2n}}{n!} \\ &= \, _{2}F_{1}\left(a, a+ \tfrac{1}{2}; \tfrac{3}{2};z^{2}\right) . \end{align}$$
Replacing $z$ with $i \tan(z)$, we get
$$ \begin{align} \, _{2}F_{1}\left(a, a+ \tfrac{1}{2}; \tfrac{3}{2};-\tan^{2}(z)\right) &= \frac{(1-i \tan z)^{1-2a}-(1+i\tan z)^{1-2a}}{(4a-2) i \tan (z)} \\ &= \frac{(\cos z - i \sin z)^{1-2a}-(\cos z + i \sin z)^{1-2a} }{(4a-2)i \tan (z) \cos^{1-2a}(z)} \\ &= \cos^{2a}(z) \, \frac{e^{-i(1-2a)z}-e^{i(1-2a)z}}{2i(2a-1) \sin(z)} \\ &= \cos^{2a}(z) \, \frac{\sin \left((1-2a)z \right)}{(1-2a)\sin(z)}. \end{align}$$