How to evaluate this integral :
$$I = \int^1_0 \frac{x^{p-1}}{(1-x)^p(1+qx)^p}dx $$
$$q>0 , -1/2<p<1$$ My attemp : $$$$ Let $x=\cos^2(y)-\frac{1}{q}\sin^2(y)$ $$dx = -2\left({1+\frac{1}{q}}\right)\sin(y)\cos(y) dy $$
therfore:
$$I = \frac{2q^{p-1}}{(1+q)^{2p-1}}\int^{\arctan \sqrt{q}}_{0}\;\;\;\frac{\left[{\cos^2(y)-\frac{1}{q}\sin^2(y)}\right]^{p-1}}{\sin^{2p-1}(y)\cos^{2p-1}(y)}dy$$
this proplem in book : Table of Integrals, Series, and Products Eighth Edition page 320
In book : $$I = \int^1_0 \frac{x^{p-1}}{(1-x)^p(1+qx)^p}dx = \frac{2\Gamma\left({p+\frac{1}{2}}\right)\Gamma(1-p)\cos^{2p}\left({\arctan\left({\sqrt q}\right)}\right)\sin\left({(2p-1)\arctan{\sqrt{q}}}\right)}{\sqrt{\pi}(2p-1)\sin\left({\arctan{\sqrt{q}}}\right)}$$
Is there a way to evaluate this integration?