Remark: Here is a solution which gives not only the maximum but also the minimum. To find them, we simply complete the square of quadratic functions.
Answer: The maximum of $a + b + c + d$ is $2$ when $a = 2, b = 1, c = 0, d = -1$.
The minimum of $a + b + c + d$ is $-18$ when $a = -3, b = -4, c = -5, d = -6$.
Proof.
Let $x = a + b + c + d$.
Using $d = x - a - b - c$, we have
\begin{align*}
&a^2 + b^2 + c^2 + d^2 + a + 3b + 5c + 7d - 4\\
={}& 2\,{a}^{2}+ \left( 2\,b+2\,c-2\,x-6 \right) a \\
&\qquad +2\,{b}^{2}+2\,bc-2\,xb+2
\,{c}^{2}-2\,xc+{x}^{2}-4\,b-2\,c+7\,x-4\\[6pt]
={}& 2\left(a - \frac{-b - c + x + 3}{2} \right)^2
+ \frac32\,{b}^{2}+ \left( -1+c-x \right) b \\[6pt]
&\qquad +\frac32\,{c}^{2}+4\,x+c+\frac12\,{x}^{2}
-xc- \frac{17}{2}\\[6pt]
={}& 2\left(a - \frac{-b - c + x + 3}{2} \right)^2 + \frac32\left(b - \frac{1 + x - c}{3}\right)^2\\[6pt]
&\qquad + \frac{4}{3}\,{c}^{2}+ \left( -\frac23\,x+\frac43 \right) c+\frac{11}{3}\,x-{\frac {26}{3}}+\frac13
\,{x}^{2}\\[6pt]
={}& 2\left(a - \frac{-b - c + x + 3}{2} \right)^2 + \frac32\left(b - \frac{1 + x - c}{3}\right)^2 + \frac43\left(c - \frac{x-2}{4}\right)^2\\[6pt]
&\qquad + \frac{(x + 18)(x - 2)}{4}. \tag{1}
\end{align*}
(Note: We complete the square in three variables ($a$, $b$ and $c$), one at a time.)
From (1), we have
$$\frac{(x + 18)(x - 2)}{4} \le 0$$
which results in $-18 \le x \le 2$.
- $x = 2$
From (1), we have
$$a - \frac{-b - c + x + 3}{2} = b - \frac{1 + x - c}{3}
= c - \frac{x-2}{4} = 0$$
which results in $a = 2, b = 1, c = 0$.
Thus, the maximum of $a + b + c + d$ is $2$ when $a = 2, b = 1, c = 0, d = -1$.
- $x = -18$
From (1), we have
$$a - \frac{-b - c + x + 3}{2} = b - \frac{1 + x - c}{3}
= c - \frac{x-2}{4} = 0$$
which results in $a = -3, b = -4, c = -5$.
Thus, the minimum of $a + b + c + d$ is $-18$ when $a = -3, b = -4, c = -5, d = -6$.
We are done.
$\phantom{2}$
Discussion.
Here we introduce a trick which I have used to prove
this.
Once we motivate our solutions by some way, we can give the following simpler solutions.
We have
\begin{align*}
&2 - (a + b + c + d) + \frac15(a^2 + b^2 + c^2 + d^2 +a + 3b + 5c + 7d - 4)\\
={}& \frac15(a - 2)^2 + \frac15(b - 1)^2 + \frac15c^2 + \frac15(d + 1)^2 \\
\ge{}& 0
\end{align*}
which gives $a + b + c + d \le 2$.
On the other hand, we have
\begin{align*}
&a + b + c + d + 18 + \frac15(a^2 + b^2 + c^2 + d^2 +a + 3b + 5c + 7d - 4)\\
={}& \frac15(a + 3)^2 + \frac15(b + 4)^2 + \frac15(c + 5)^2 + \frac15(d + 6)^2 \\
\ge{}& 0
\end{align*}
which gives $a + b + c + d \ge -18$.