4

How to prove the Bertrand convergence test that states:

If there exists such limit that $$\lim_{n\to\infty}((n(\frac{a_n}{a_{n+1}}-1)-1)\ln{n})=q$$ then the series $\sum^{+\infty}_{n=1}=a_n$, where $a_n>0, \forall n\in\mathbb{N}$ , converges if $q>1$ and diverges if $q<1$.

The problem is from the book Drugi, D., Collection of Problems in Mathematical Analysis (in Serbian), Naša Knjiga D.O,O., 2003, pp. 38, problem 16.

bb_823
  • 2,709
  • Your question is phrased as an isolated problem, without any further information or context. This does not match many users' quality standards, so it may attract downvotes, or be closed. To prevent that, please [edit] the question. This will help you recognise and resolve the issues. – Sangchul Lee Apr 04 '23 at 01:36
  • 2
    Also, note that $$\lim_{n\to\infty}\left[\left(n\left(\frac{a_n}{a_{n+1}}-1\right)-1\right)\log n\right]=q\quad\iff\quad a_n=\frac{1}{n(\log n)^{q+o(1)}},$$ – Sangchul Lee Apr 04 '23 at 01:41
  • @OliverDíaz and @ SangchulLee the book from which I got this problem just asks for this proof without anything previously mentioned about it and I couldn't come up with any ideas how to solve it. – bb_823 Apr 05 '23 at 18:16
  • @OliverDíaz here it is https://www.dropbox.com/s/wmtjqve9376ddim/ljasko-2.pdf?dl=0 page 38, problem 16. I'm not sure if anyone can access it other than me, first time using dropbox, so please tell me if you can't. Also there might be a foreign language barrier, I couldn't find the book int english – bb_823 Apr 05 '23 at 18:46

1 Answers1

2

I have preference for considering rations $\frac{|a_{n+1}|}{|a_n|}$ instead of $\frac{|a_n|}{|a_{n+1}|}$. The former setting is in a way more consistent with how ratio test in presented in Calculus courses, the latter setting is used in the following Wikipedia article.

All the result will be presented in the former setting. It is not too difficult to make the appropriate modifications to express the results the way if Wikipedia.


Bertrand's and Raabe's tests can be viewed as particular instances of Kummer's test:

Kummer: Let $\sum_na_n$ be a series with terms in $\mathbb{C}\setminus\{0\}$ and $b_n$ a sequence of positive numbers.

  • (a) If there is $r>0$ and $N\in\mathbb{N}$ such that \begin{align} b_n-b_{n+1}\frac{|a_{n+1}|}{|a_n|}\geq r,\qquad n\geq N\tag{1}\label{one} \end{align} then $\sum_na_n$ is absolutely convergent.
  • (b) If there is $N\in\mathbb{N}$ such that \begin{align} b_n-b_{n+1}\frac{|a_{n+1}|}{|a_n|}\leq 0,\qquad n\geq N\tag{2}\label{two} \end{align} and $\sum_n\frac1{b_n}$ diverges, then $\sum_n|a_n|$ diverges.

Proof: (a) For all $n\geq N$, $$b_n|a_n|-b_{n+1}|a_{n+1}|\geq r|a_n|\geq0$$ Adding terms from between $N$ and $N$ yields $$b_N|a_N|\geq b_N|a_N|-b_{n+1}|a_{n+1}|\geq r\sum^n_{k=N}|a_k|$$ This shows that $\sum^n_{k=1}|a_k|$ is a bounded monotone nondecreasing sequence.

(b) It follows that formal $n\neq N$ $$\frac{|a_n|}{1/b_n}\leq \frac{|a_{n+1}|}{1/b_{n+1}}$$ Thus, the sequence $n\mapsto \frac{|a_n|}{1/b_n}$ is monotone nondecreasing and bounded below; hence $$c\frac{1}{b_n}\leq |a_n|,\qquad n\geq N$$ for some $c>0$. The conclusion follows from comparison.


The sequence $b_n=(n-1)\log(n-1)$ corresponds to Bertrand's test.

Bertrand: Suppose $|a_n|>0$ for all $n\geq N$

  • (c) If $\frac{|a_{n+1}|}{|a_n|}\leq 1-\frac1n-\frac{q_n}{n\log n}$ such that $q_n\geq q>1$ for all $n\geq N$, then $\sum_na_n$ converges absolutely.
  • (d) If $\frac{|a_{n+1}|}{|a_n|}\geq 1-\frac1n-\frac{q_n}{n\log n}$ such that $q_n\leq q<1$ for all $n\geq N$, then $\sum_n|a_n|$ diverges.

In many instances, one has $$\lim_n n\log n\big(1 -\tfrac{|a_{n+1}|}{|a_n|}\big)-\log n =q $$ exists. If $q>1$, then $\sum_n|a_n|$ converges while if $q<1$, $\sum_n|a_n|$ diverges. When $q=1$, the test is inconclusive.

Proof: (c) implies that if $n\geq N$ $$(n-1)\log(n-1) -n\log(n)\frac{|a_{n+1}|}{|a_n|}\geq q_n+\log\big(1-\tfrac1n\big)^{n-1}\geq q+\log\big(1-\tfrac1n\big)^{n-1}$$ As $\log\big(1-\tfrac1n\big)^{n-1}\xrightarrow{n\rightarrow\infty}-1$, there is $N'\geq N$ such that $\log\big(1-\tfrac1n\big)^{n-1}>-1-\frac{q-1}{2}$ for $n\geq N'$. Hence, for $n\geq N'$ $$(n-1)\log(n-1) -n\log(n)\frac{|a_{n+1}|}{|a_n|}\geq q-1-\frac{q-1}{2}=\frac{q-1}{2}>0$$

(d) implies that if $n\geq N$ $$(n-1)\log(n-1) -n\log(n)\frac{|a_{n+1}|}{|a_n|}\leq q_n+\log\big(1-\tfrac1n\big)^{n-1}\leq q+\log\big(1-\tfrac1n\big)^{n-1}$$ As $\log\big(1-\tfrac1n\big)^{n-1}\xrightarrow{n\rightarrow\infty}-1$, there is $N'\geq N$ such that $\log\big(1-\tfrac1n\big)^{n-1}<-1+\frac{1-q}{2}$ for $n\geq N'$. Hence, for $n\geq N'$ $$(n-1)\log(n-1) -n\log(n)\frac{|a_{n+1}|}{|a_n|}\leq q+\log\big(1-\tfrac1n\big)^{n-1}<-\frac{1-q}{2}<0$$


The sequence $b_n=n-1$ corresponds to Raabe's test:

Raabe: Suppose$|a_n|>0$ for all $n\geq N$.

  • (e) If $\frac{|a_{n+1}|}{|a_n|}\leq 1-\frac{p}{n}$ for some $p>1$, $\sum_na_n$ converges absolutely.
  • (f) If $\frac{|a_{n+1}|}{|a_n|}\geq 1-\frac{p}{n}$ for some $p\leq1$, $\sum_n|a_n|$ diverges.

In many instances, one has $$q=\lim_n n\big(1-\tfrac{|a_{n+1}|}{|a_n|}\big)$$ exists. If $q>1$, $\sum_n|a_n|$ converges while if $q<1$, $\sum_n|a_n|$ diverges. When $q=1$, the test is inconclusive.

Proof: Let $b_n=n-1$.

(e) implies that $$ b_n- b_{n+1}\frac{|a_{n+1}|}{|a_n|}\geq p-1>0$$

(f) implies that $$b_n- b_{n+1}\frac{|a_{n+1}|}{|a_n|}\leq p-1\leq 0$$


Comment: Notice that the limit version of Bertrand's theorem can be seen as an improvement to Raabe's test when the latter fails:

$$\lim_n n\log n\Big(1-\tfrac{|a_{n+1}|}{|a_n|}\Big)-\log n=\lim_n\Big(n\big(1-\tfrac{|a_{n+1}|}{|a_n|}\big)-1\Big)\log n$$

Mittens
  • 46,352