The exercise asks me to study the convergence of the following series $$ \sum \frac{(3n)!}{3^{3n}(n!)^3}.$$
The exercise gives me an indication to calculate $\frac{a_{n+1}}{a_n}$. So: $$\frac{a_{n+1}}{a_n}=\frac{\frac{(3(n+1))!}{3^{3(n+1)}((n+1)!)^3}}{\frac{(3n)!}{3^{3n}(n!)^3}}=\frac{(3(n+1))!3^{3n}(n!)^3}{(3n)!3^{3(n+1)}((n+1)!)^3}.$$ Let's simplify: $$\begin{align}\frac{(3(n+1))!}{(3n)!}&=\frac{(3n+3)(3n+2)(3n+1)3n(3n-1)...2·1)}{3n(3n-1)...2·1}\\&=(3n+3)(3n+2)(3n+1)\end{align}$$ $$\frac{3^{3n}}{3^{3(n+1)}}=3^{-3}$$ $$\frac{(n!)^3}{((n+1)!)^3}=\left(\frac{n!}{(n+1)!}\right)^3=\frac{1}{(n+1)^3}$$ Therefore, $\frac{a_{n+1}}{a_n}=\frac{(3n+3)(3n+2)(3n+1)}{3^3(n+1)^3}=\frac{(3n+2)(3n+1)}{3^2(n+1)^2}=\frac{9n^2+9n+2}{9n^2+18n+9}$
Applying d'Alembert's ratio test: $$\lim \frac{a_{n+1}}{a_n}=\lim \frac{9n^2+9n+2}{9n^2+18n+9}=1$$ Then the test is inconclusive.
Applying Raabe's test we have: $$\lim \hspace{5 pt }n \left( 1- \frac{a_{n+1}}{a_n}\right)=\lim \hspace{5 pt }n \left( 1- \frac{9n^2+9n+2}{9n^2+18n+9}\right)=\lim \hspace{5 pt }\frac{9n^2+7n}{9n^2+18n+9}=1$$ Then the test is inconclusive.
Is there an error in my reasoning or is convergence studied in another way? I am confused that I am asked to study the quotient but ratio's test and Raabe's test are inconlcusive.