4

Seeking reasoning and verification that $$\sum_{n=1}^\infty \left(\frac{1}{(n+1)\ln^2 (n+1)}\right)^r$$ diverges for $0<r<1$.

Referring to a thread from 2016:

Is there a series satisfies $a_n>0,\sum a_n$ converges but $\sum a_n^{r}$ diverges for all $0\leq r<1$

I verified that the sum converges for $r=1$ using the integral test, but am having a difficult time verifying its divergence for $0<r<1$.

My apologies if this is obvious. My available resources and textbooks lack clarity on the subject.

Gary
  • 36,640
JR 9071
  • 43
  • 1
    You could try to use the integral test. Alternatively you could try the comparison test, if you can show that $\ln^{2r}(n+1)$ is at most $(n+1)^{1-r}$ for all sufficiently large $n$, then you can compare the series to the harmonic series. – user23571113 Jul 30 '23 at 00:46
  • 2
    Cauchy Condensation test works nicely here. – Ragib Zaman Jul 30 '23 at 01:08

4 Answers4

3

Claim 1: For any $\beta\in(0,\infty)$, there exists $n_{0}$ such that $\ln n\leq n^{\beta}$ whenever $n\geq n_{0}$.

Proof: Let $\beta\in(0,\infty)$ be given. By L Hospital rule, \begin{eqnarray*} & & \lim_{x\rightarrow\infty}\frac{\ln x}{x^{\beta}}\\ & = & \lim_{x\rightarrow\infty}\frac{\frac{1}{x}}{\beta x^{\beta-1}}\\ & = & \frac{1}{\beta}\lim_{x\rightarrow\infty}\frac{1}{x^{\beta}}\\ & = & 0. \end{eqnarray*} Therefore, there exists $x_{0}$ such that $\frac{\ln x}{x^{\beta}}<\frac{1}{2}$ whenever $x\geq x_{0}$. In particular, $\ln n\leq n^{\beta}$ whenever $n\in\mathbb{N}\cap(x_{0},\infty)$.


For your problem: Let $r\in(0,1)$ be given. Choose $\beta\in(0,\frac{1-r}{2r})$. Choose $n_{0}\in\mathbb{N}$ such that $\ln n\leq n^{\beta}$ whenever $n\geq n_{0}$. Denote $\alpha=(2\beta+1)r$. Note that $0<\alpha<1$.

For $n\geq n_{0}$, we have that \begin{eqnarray*} & & n^{r}\left(\ln n\right)^{2r}\\ & \leq & n^{r}\cdot\left(n^{\beta}\right)^{2r}\\ & = & n^{(2\beta+1)r}\\ & = & n^{\alpha}. \end{eqnarray*} It follows that \begin{eqnarray*} & & \sum_{n=2}^{\infty}\left(\frac{1}{n\ln^{2}n}\right)^{r}\\ & \geq & \sum_{n=n_{0}}^{\infty}\frac{1}{n^{\alpha}}\\ & = & \infty. \end{eqnarray*} Hence, $\sum_{n=2}^{\infty}\left(\frac{1}{n\ln^{2}n}\right)^{r}$ diverges.

2

All that is needed is that, for $0 < c < 1$, $\lim_{x \to \infty} \dfrac{\ln(x)}{x^c} =0 $.

This has been proved here many times, often by me, so I will leave this to you.

Since $0 < r < 1$, let $c = \dfrac{1-r}{2} $ so $0 < c < 1$, $r=1-2c$, and $c < 1-r$.

Then, writing $n$ for $n+1$ since it doesn't matter, we want to show that $(n \ln^2(n))^r \lt n^s$ for some $0 < s < 1$, since $\sum_{n=1}^{\infty} \dfrac1{n^s}$ diverges.

$\begin{array}\\ (n \ln^2(n))^r &=(n \ln^2(n))^{1-2c}\\ &=n^{1-2c} \ln^{2(1-2c)}(n)\\ &\lt n^{1-2c} \ln^{2}(n)\\ &\lt n^{1-c} n^{-c}\ln^{2}(n)\\ &\lt n^{1-c} \dfrac{\ln^{2}(n)}{n^c}\\ &\lt n^{1-c} \qquad\text{for large enough }n\\ \text{so}\\ \dfrac1{(n \ln^2(n))^r} &\gt \dfrac1{n^{1-c}} \qquad\text{for large enough }n\\ \end{array} $

and this sum of this diverges.

No te that this works for $\dfrac1{(n \ln^b(n))^r}$ for any $b > 0$.

marty cohen
  • 110,450
1

We can show given series diverges using Bertrand's test of convergence. From the series, $a_n=\frac{1}{(n+1)ln^2(n+1)}$ Now let's look at the following limit, where $0<r<1$: $$\lim_{n\to\infty}\left(\left(n\left(\frac{\left(\frac{1}{(n+1)\ln^2(n+1)}\right)^r}{\left(\frac{1}{(n+2)\ln^2(n+2)}\right)^r}-1\right)-1\right)\ln{n}\right)=\lim_{n\to\infty}\left(\left(n\left(\left(\frac{(n+2)ln^2(n+2)}{(n+1)ln^2(n+1)}\right)^r-1\right)-1\right)\ln{n}\right)=\lim_{n\to\infty}{((n(1-1)-1)\ln n)}=\lim_{n\to\infty}{(-\ln{n})}=-\infty<1$$

Thus, using the Bertrand's test of convergence we can conclude that the series $\displaystyle\sum_{n=1}^\infty \left(\frac{1}{(n+1)\ln^2 (n+1)}\right)^r$ diverges for $0< r<1$. You can easily show that it also diverges for all $r\le0$, meaning the series diverges for all $r<1$.

bb_823
  • 2,709
1

As indicated in the comment section we can conveniently use Cauchy's condensation test. We write the series as \begin{align*} \sum_{n=1}^{\infty}\left(\frac{1}{(n+1)\ln^2(n+1)}\right)^r=\sum_{n=2}^{\infty}\left(\frac{1}{n\ln^2(n)}\right)^r \tag{1} \end{align*}

According to Cauchy's condenation test the right-hand side of (1) converges iff the following series converges. Given $0<r<1$, we obtain \begin{align*} \color{blue}{\sum_{n=2}^{\infty}}\color{blue}{2^n\left(\frac{1}{2^n\ln^2\left(2^n\right)}\right)^r} &=\sum_{n=2}^{\infty}2^{n(1-r)}\frac{1}{\left(\ln(2^n)\right)^{2r}}\\ &=\sum_{n=2}^{\infty}2^{n(1-r)}\frac{1}{\left(n\ln (2)\right)^{2r}}\\ &\,\,\color{blue}{=\frac{1}{\left(\ln (2)\right)^{2r}}\sum_{n=2}^{\infty}2^{n(1-r)}\frac{1}{n^{2r}}\to\infty}\tag{2} \end{align*} Since (2) diverges, the divergence of (1) follows.

Markus Scheuer
  • 112,413