For $$a,b,c > 1$$ show that $$a^{\sqrt{\log_ba}}+b^{\sqrt{\log_cb}}+c^{\sqrt{\log_ac}}\geqslant a+b+c$$
I know how to show this $$a^{{\log_bc}}+b^{{\log_ca}}+c^{{\log_ab}}\geqslant a+b+c$$ $$a^{\log_bc}+b^{\log_ca}=a^{\log_bc}+a^{\log_cb}\geq2\sqrt{a^{\log_bc}a^{\log_cb}}=2\sqrt{a^{\log_bc+\log_cb}}\geq2\sqrt{a^2}=2a$$ Or this one $$(ab)^{\sqrt{\log_ab}}+(bc)^{\sqrt{\log_bc}}+(ca)^{\sqrt{\log_ca}}\geqslant a^2+b^2+c^2$$ $$a^{\sqrt{\log_ab}}=b^{\sqrt{\log_ba}}$$ $$(ab)^{\sqrt{\log_a}}=a^{\sqrt{\log_ab}}b^{\sqrt{\log_ab}}=b^{\sqrt{\log_ba}}b^{\sqrt{\log_ab}}=b^{\sqrt{\log_ab}+\sqrt{\log_ba}}\geq b^2$$ Or even $$a^{{\log_ba}}+b^{{\log_cb}}+c^{{\log_ac}}\geqslant a+b+c$$ But the first one, I don't know how to start. Please give me a starting point.