6

Problem. Let $a,b,c\ge 0: a+b+c+abc=4.$ Find minimal value of $P$ $$P=\frac{\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}}{\sqrt{ab+bc+ca+6}}.$$ Source: Vo Quoc Ba Can.


My attempt:

Set $$P(a,b,c)=\frac{\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}}{\sqrt{ab+bc+ca+6}}.$$

After some calculating works, I've tried prove $P(1,1,1)$ is the minimal value.

It means that we need to prove $$\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\ge\sqrt{2}\cdot\sqrt{ab+bc+ca+6}.$$ By squaring both side, it remains to prove $$a+b+c+3+2\sum_{cyc}\sqrt{(a+1)(b+1)}\ge 2(ab+bc+ca+6),$$or $$2\sum_{cyc}\sqrt{(a+1)(b+1)}\ge 5+abc+2(ab+bc+ca).$$ I was stucked here. Hope to see some ideas to continue the idea.

Also, all answer and comment are welcome. Thank for your attention.

Updated edit: Thank you @138 Aspen. I made a mistake in calculating.

Minimum should be $$P(0,2,2)=\frac{2\sqrt{30}+\sqrt{10}}{10}.$$

It means that we need to prove $$\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\ge\frac{2\sqrt{30}+\sqrt{10}}{10}\cdot\sqrt{ab+bc+ca+6},$$which seems ugly. Hope MV (mixing variables) technique works.

6 Answers6

4

It means that we need to prove $$\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\ge\frac{2\sqrt{30}+\sqrt{10}}{10}\cdot\sqrt{ab+bc+ca+6},$$

Put $M=\left(\frac{2\sqrt{30}+\sqrt{10}}{10}\right)^2$, $x=\sqrt{a+1}\ge 1$, $y=\sqrt{b+1}\ge 1$, and $z=\sqrt{c+1}\ge 1$.

Thus we need to show $(x+y+z)^2\ge M(ab+bc+ca+6)$.

We have $$x^2+y^2+z^2=a+b+c+3,$$ $$x^2y^2z^2=(a+1)(b+1)(c+1)=$$ $$abc+ab+bc+ca+a+b+c+1=ab+bc+ca+5,$$ $$x^2y^2+y^2z^2+z^2x^2=$$ $$(a+1)(b+1)+(b+1)(c+1)+(c+1)(a+1)=$$ $$ab+bc+ca+2(a+b+c)+3=$$ $$ab+bc+ca+2(x^2+y^2+z^2)-3.$$

Thus we have to show that

$$(x+y+z)^2\ge M(x^2y^2+y^2z^2+z^2x^2-2(x^2+y^2+z^2)+9)$$

provided $x,y,z\ge 1$ and $$x^2y^2z^2-5=x^2y^2+y^2z^2+z^2x^2-2(x^2+y^2+z^2)+3.$$

Maybe this can be achieved using Lagrange's multipliers.

Alex Ravsky
  • 106,166
  • 1
    The idea is similar to mine. I used $x := \sqrt{a + 1} - 1$ etc. then use pqr. By the way, I use this substitution in here – River Li Nov 10 '23 at 14:02
3

Two approaches.

Approach 1.

We may use Holder, similar to my answer here.

It suffices to prove that $$\sum_{\mathrm{cyc}}\sqrt{\frac{a + 1}{ab + bc + ca + 6}} \ge \frac{2\sqrt{30} + \sqrt{10}}{10}.$$

If $\max(a, b, c) = 4$, clearly the inequality is true. In the following, assume that $\max(a, b, c) < 4$.

By Holder, we have \begin{align*} &\Big(\sum_{\mathrm{cyc}}\sqrt{\frac{a + 1}{ab + bc + ca + 6}}\Big)^2 \sum_{\mathrm{cyc}} (a + 1)^2(ab + bc + ca + 6)(ab + \sqrt{3}\, bc + ca)^3\\[6pt] &\ge \left(\sum_{\mathrm{cyc}} (a + 1)(ab + \sqrt{3}\, bc + ca)\right)^3. \tag{1} \end{align*}

It suffices to prove that \begin{align*} &\left(\sum_{\mathrm{cyc}} (a + 1)(ab + \sqrt{3}\, bc + ca)\right)^3\\ \ge{}& \left(\frac{2\sqrt{30} + \sqrt{10}}{10}\right)^2 \sum_{\mathrm{cyc}} (a + 1)^2(ab + bc + ca + 6)(ab + \sqrt{3}\, bc + ca)^3. \tag{2} \end{align*} (2) is true which is verified by Mathematica - a Computer Algebra System.

$\phantom{2}$

Approach 2.

Fact 1. Let $p, q, r \ge 0$ with $p^2 \ge 3q$ and $r \ge \frac{4pq - p^3}{9}$ and $p^2 + 4pr + 2qr + r^2 + 2p - 2q + 8r - 4 = 0$. Then $$\frac{(3 + p)^2}{2pq - 2pr + q^2 + 4q - 6r + 6} \ge \frac{13 + 4\sqrt 3}{10}.$$ (It is verified by Mathematica (a Computer Algebra System).)

Let \begin{align*} p &:= (\sqrt{a+1} - 1) + (\sqrt{b + 1} - 1) + (\sqrt{c + 1} - 1), \\ q &:= \sum_{\mathrm{cyc}} (\sqrt{1 + a} - 1)(\sqrt{1 + b} - 1), \\ r &:= (\sqrt{1 + a} - 1)(\sqrt{1 + b} - 1)(\sqrt{1 + c} - 1). \end{align*} (Note: Letting $x = \sqrt{a+1} - 1$, $y = \sqrt{b + 1} - 1$ and $z = \sqrt{c + 1} - 1$, we have $p = x + y + z, q = xy + yz + zx, r = xyz$.)

Clearly, we have $p^2 \ge 3q$, and $r \ge \frac{4pq - p^3}{9}$ (degree three Schur). Also, we have $$p^2 + 4pr + 2qr + r^2 + 2p - 2q + 8r - 4 = a + b + c + abc - 4 = 0.$$ Moreover, we have $$\frac{(3 + p)^2}{2pq - 2pr + q^2 + 4q - 6r + 6} = \frac{(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1})^2}{ab+bc+ca+6}.$$ By Fact 1, we have $$ \frac{(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1})^2}{ab+bc+ca+6} \ge \frac{13 + 4\sqrt 3}{10}.$$

River Li
  • 49,125
2

Remarks: I found a proof better than my two old approaches. We use the so-called isolated fudging. For my answers using isolated fudging, see e.g. P1, P2, P3.

We need to prove that $$\sqrt{a + 1} + \sqrt{b + 1} + \sqrt{c + 1} \ge \frac{2\sqrt{30} + \sqrt{10}}{10} \cdot \sqrt{ab + bc + ca + 6}. \tag{1}$$

Let $C := \big(\frac{2\sqrt{30} + \sqrt{10}}{10}\big)^2$. Squaring both sides of (1), it suffices to prove that $$\sum_{\mathrm{cyc}} 2\sqrt{a + 1}\sqrt{b + 1} \ge C(ab + bc + ca + 6) - a - b - c - 3. \tag{2}$$

Let \begin{align*} f(a, b, c) &:= \frac{\sqrt{3} + 2}{5}abc + \frac{129 - 28\sqrt{3}}{90}ab + \frac{16\sqrt{3} - 3}{45}(a + b)c\\[6pt] &\qquad + \frac{14\sqrt{3} + 3}{45}(a + b) + \frac{3 - \sqrt 3}{45}c. \end{align*} We have \begin{align*} &C(ab + bc + ca + 6) - a - b - c - 3 - \sum_{\mathrm{cyc}} f(a, b, c)\\ ={}& - \frac35(2 +\sqrt 3)(a + b + c + abc - 4)\\[6pt] ={}& 0. \tag{3} \end{align*}

Using (3), (2) is written as $$\sum_{\mathrm{cyc}} \left(2\sqrt{a + 1}\sqrt{b + 1} - f(a, b, c)\right) \ge 0. \tag{4}$$

Fact 1. Let $x, y, z \ge 0$ with $x + y + z + xyz = 4$. Then $$2\sqrt{x + 1}\sqrt{y + 1} - f(x, y, z) \ge 0.$$ (The proof is given at the end.)

By Fact 1, letting $x = a, y = b, z = c$, we have $2\sqrt{a + 1}\sqrt{b + 1} - f(a, b, c) \ge 0$; letting $x = b, y = c, z = a$, we have $2\sqrt{b + 1}\sqrt{c + 1} - f(b, c, a)\ge 0$; letting $x = c, y = a, z = b$, we have $2\sqrt{c+1}\sqrt{a+1} - f(c, a, b) \ge 0$. Thus, (4) is true.

We are done.

$\phantom{2}$


Proof of Fact 1.

We need to prove that \begin{align*} 2\sqrt{xy + x + y + 1} &\ge \frac{\sqrt{3} + 2}{5}xyz + \frac{129 - 28\sqrt{3}}{90}xy + \frac{16\sqrt{3} - 3}{45}(x + y)z\\[6pt] &\qquad + \frac{14\sqrt{3} + 3}{45}(x + y) + \frac{3 - \sqrt 3}{45}z. \tag{A1} \end{align*}

Let $p = x + y, q = xy$. Then $0 \le p \le 4$, $q \ge 0$ and $p^2\ge 4q$. Using $z = \frac{4 - x - y}{1 + xy} = \frac{4 - p}{1 + q}$, (A1) is equivalently written as \begin{align*} 180(1 + q)\sqrt{p + q + 1} &\ge ( 129-28\sqrt {3} ) {q}^{2} + ( 10\sqrt {3}\,p+44 \sqrt {3}-30p+273 ) q\\ &\quad -32\,\sqrt {3}{p}^{2}+158\,\sqrt {3}p+6\, {p}^{2}-8\,\sqrt {3}-24\,p+24.\tag{A2} \end{align*} Let $F(q) := \mathrm{LHS}_{(A2)} - \mathrm{RHS}_{(A2)}$. We have, for all $0 \le q \le p^2/4$, \begin{align*} F''(q) &= \frac{45(4p + 3q + 3)}{(p + q + 1)^{3/2}} - 258 + 56\sqrt{3} \\ &\le \frac{45(4p + 3\cdot p^2/4 + 3)}{(p + 1)^{3/2}} - 258 + 56\sqrt{3}\\ &< 0. \end{align*} Thus, $F(q)$ is concave on $[0, p^2/4]$. Also, we have $F(0) \ge 0$ and $F(p^2/4) \ge 0$ (easy), for all $0\le p \le 4$. Thus, $F(q) \ge 0$ on $[0, p^2/4]$, given any $0 \le p\le 4$.

We are done.

River Li
  • 49,125
1

We have for $x\in[0,2]$ :

$$\sqrt{x+1}\geq g(x)=\frac{\left(1-\sqrt{3}\right)}{0-2}x+1+\frac{1}{8}\frac{x\left(2-x\right)}{x+2}+\frac{1}{3}\frac{x^{2}\left(2-x\right)}{\left(x+2\right)^{4}}$$

Then :

$$a(x,y,z)=(g(x)+g(y)+g(z))^{2}-\left(\frac{2\sqrt{30}+\sqrt{10}}{10}\right)^2(xy+yz+zx+6)$$

Then it seems that all the coefficient are positive in :

$$a\left(\frac{2x}{x+1},\frac{2y}{y+1},\frac{2(x+y+2)}{5xy+x+y+1}\right)$$

Ps: it's painful need a software better than Geogebra.

If you want to check it's all positive .(false)

Another way :

We have for $x\in[0,2]$ :

$$\sqrt{x+1}\geq g(x)=\frac{\left(1-\sqrt{3}\right)}{0-2}x+1+\frac{1}{8}\frac{x\left(2-x\right)}{x+2}+\frac{1}{\left(16\left(7+4\sqrt{3}\right)\right)}x\left(2-x\right)$$

We have for $x\in[3,4]$ :

$$f\left(x\right)=\sqrt{x+6}\leq h\left(x\right)=\frac{\left(x+6\right)}{\left(f\left(4\right)-f\left(3\right)\right)\left(x-4\right)+f\left(4\right)}$$

Then it seems true that :

$$a(x,y,z)=(g(x)+g(y)+g(z))-\left(\frac{2\sqrt{30}+\sqrt{10}}{10}\right)h\left(xy+yz+zx\right),a\left(\frac{2x}{x+1},\frac{2y}{y+1},\frac{2(x+y+2)}{5xy+x+y+1}\right)\geq 0$$

Can someone check (I check it's positive for $x\geq 1,y\geq 1$ as we have some constraint on the bound above):

$$a\left(\frac{2x}{x+1},\frac{2y}{y+1},\frac{2(x+y+2)}{5xy+x+y+1}\right)>0$$

Using Am-Gm it's not hard to show it's positive for $x\geq 1,y\geq 1$ it's a bit lenghty .

Using Jensen's inequality :

define :

$$g(x)=\frac{\left(1-\sqrt{3}\right)}{0-2}x+1+\frac{1}{8}\frac{x\left(2-x\right)}{x+2}+\frac{1}{\left(16\left(7+4\sqrt{3}\right)\right)}x\left(2-x\right),t\left(x\right)=\left(x+2+\frac{1}{x+d}\right)g\left(x\right),h\left(x\right)=\left(x+2+\frac{1}{x+d}\right)\left(g\left(x\right)-\frac{t''\left(0\right)x^{2}}{2\left(x+2+\frac{1}{x+d}\right)}\right)$$

Such that : $$h''(0)=h''(2)=0,d\simeq 6$$

Then we have $x,y\in[1,\infty)$:

$$d\left(x,y\right)>b\left(x,y\right)$$

Where :

$$l\left(x,y,z\right)=\sqrt{x+1}+\sqrt{y+1}+\sqrt{z+1}-\frac{\left(2\sqrt{30}+\sqrt{10}\right)}{10}\left(\sqrt{6+xy+yz+zx}\right),d\left(x,y\right)=l\left(\frac{2x}{x+1},\frac{2y}{y+1},\frac{2(x+y+2)}{5xy+x+y+1}\right)$$

And :

$$a\left(x,y,z\right)=\left(\frac{1}{m\left(x\right)}+\frac{1}{m\left(y\right)}+\frac{1}{m\left(z\right)}\right)\left(h\left(\frac{\left(\frac{x}{m\left(x\right)}+\frac{y}{m\left(y\right)}+\frac{z}{m\left(z\right)}\right)}{\frac{1}{m\left(x\right)}+\frac{1}{m\left(y\right)}+\frac{1}{m\left(z\right)}}\right)\right)-\frac{\left(2\sqrt{30}+\sqrt{10}\right)}{10}\left(xy+yz+zx+6\right)\cdot\frac{1}{\left(\sqrt{10}-3\right)\left(xy+yz+zx-4\right)+\sqrt{10}}+\frac{j\left(x\right)}{m\left(x\right)}+\frac{j\left(y\right)}{m\left(y\right)}+\frac{j\left(z\right)}{m\left(z\right)},m\left(x\right)=\left(x+2+\frac{1}{x+6}\right),b\left(x,y\right)=a\left(\frac{2x}{x+1},\frac{2y}{y+1},\frac{2(x+y+2)}{5xy+x+y+1}\right),j\left(x\right)=\frac{t''\left(0\right)x^{2}}{2}$$

Barackouda
  • 3,879
  • The bound is fine. It is not true that all coefficients are non-negative because you forgot the square of $\left(\frac{2\sqrt{30}+\sqrt{10}}{10}\right)$. It is a horribly long expression. You need to prove it. – River Li Nov 10 '23 at 23:37
  • @RiverLi it's a typo and the problem seems now monstruous – Barackouda Nov 11 '23 at 08:29
  • Did you check the coefficients? I checked 9 hours ago. It is not true all the coefficients are non-negative. – River Li Nov 11 '23 at 08:50
  • @RiverLi I can not check it by eyes – Tran Ngoc Khuong Trang Nov 11 '23 at 16:38
  • 1
    @TATAbox My checking shows there are negative coefficients. I think it is difficult to prove that the expression is non-negative. I am interested in a proof which is human verifiable. Sometimes, we use computer to motivate a proof (perhaps very difficult to motivate it by hand), however the proof itself can be verified even by hand. Here, it is too complicated to verify it if all coefficients are not non-negative. – River Li Nov 12 '23 at 00:40
  • @RiverLi Yes you are right I shall propose something else – Barackouda Nov 12 '23 at 08:24
  • @Wolframandgromit You may use simpler bounds. – River Li Nov 12 '23 at 09:07
  • @RiverLi Done ! But I cannot check with Geogebra (some problem with the sotware) – Barackouda Nov 12 '23 at 09:18
  • @RiverLi I show the equality case and the case $(1,1,1)$ but it's partial . This problem is a nightmare . – Barackouda Nov 12 '23 at 11:01
  • @Wolframandgromit I suggest you do not put the very very long expression here. It is expected of you to find a simple solution. – River Li Nov 12 '23 at 11:54
  • @RiverLi Perhaps have you a proof using $pqr$ method using all the work here? – Barackouda Nov 12 '23 at 13:09
  • @Wolframandgromit You can try. It is too complicated for your expression. – River Li Nov 12 '23 at 13:23
  • @RiverLi for $x,y\in[1,16]$ we have : $$t\left(x\right)=\left(x+2+\frac{x}{x+\frac{1}{2}}\right)g\left(x\right),m\left(x\right)=\left(x+2+\frac{x}{x+\frac{1}{2}}\right),f\left(x\right)=\sqrt{x+6},h\left(x\right)=\frac{\left(x+6\right)}{\left(f\left(4\right)-f\left(3\right)\right)\left(x-4\right)+f\left(4\right)},g(x)=\frac{\left(1-\sqrt{3}\right)}{0-2}x+1+\frac{1}{8}\frac{x\left(2-x\right)}{x+2}+\frac{1}{\left(16\left(7+4\sqrt{3}\right)\right)}x\left(2-x\right)$$ then we have : $$c\left(x,y,z\right)=a\left(\frac{2x}{x+1},\frac{2y}{y+1},\frac{2(x+y+2)}{5xy+x+y+1}\right)>0$$ where..... – Barackouda Nov 12 '23 at 14:02
  • Where $$a(x,y,z)=\left(\frac{1}{m\left(x\right)}+\frac{1}{m\left(y\right)}+\frac{1}{m\left(z\right)}\right)t\left(\frac{\frac{x}{m\left(x\right)}+\frac{y}{m\left(y\right)}+\frac{z}{m\left(z\right)}}{\frac{1}{m\left(x\right)}+\frac{1}{m\left(y\right)}+\frac{1}{m\left(z\right)}}\right)-\left(\frac{2\sqrt{30}+\sqrt{10}}{10}\right)\left(\frac{6+xy+yz+zx}{\left(f\left(4\right)-f\left(3\right)\right)\left(xy+yz+zx-4\right)+f\left(4\right)}\right)$$ – Barackouda Nov 12 '23 at 14:03
  • Using Jensen's inequality on $t\left(x\right)=\left(x+2+\frac{x}{x+\frac{1}{2}}\right)g\left(x\right)$ – Barackouda Nov 12 '23 at 14:04
  • Correction we can use Jensen's inequality for $x\in[1,10],y\in[1,2]$ and $$t\left(x\right)=\left(\frac{x}{2}+1.5+\frac{x}{x+2}\right)g\left(x\right)$$ instead of the $t(x)$ just above it simplify the current lengthy expression above . – Barackouda Nov 12 '23 at 15:01
1

Let us rewrite. We are searching the minimal value of the expression $$ P(a,b,c)= \frac {\sqrt{a+1} + \sqrt{b+1} + \sqrt{c+1}} {\sqrt{(a+1)(b+1)(c+1)+1}} $$ constrained to the relation $a+b+c+abc=4$. It turns out it is $\sqrt K$, $$ P(a,b,c)\ge \sqrt K\ ,\qquad K=\frac1{10}(1+2\sqrt 3)^2=\frac 1{10}(13+2\sqrt 7)\approx 1.9928203230275\dots\ \ . $$ Let us show this.


It is convenient to substitute $x,y,z\ge 1$ for $\sqrt{a+1}$, $\sqrt{b+1}$, $\sqrt{c+1}$. And let us use the symmetric elementary functions $p,q,r$ for the variables $x,y,z$, so $p=x+y+z$, $q=xy+yz+zx$, $r=xyz$. The relation satisfied by $x,y,z$ is: $$ x^2y^2z^2 -x^2y^2 -y^2z^2-z^2x^2 +2x^2+2y^2+2z^2-8=0\ . $$ In terms of $p,q,r$ it is: $$ r^2 -(q^2-2pr)+2(p^2-2q)-8=0\ . $$ So we solve a related problem first, we minimize the following function $F$ on the domain $p\ge 3$, $q\ge 3$, $r\ge 1$, $p^2\ge 3p$ (which is $\sum(x-y)^2\ge 0$ with equality iff $x=y=z$), and $p(p^2-3q) + 6r\ge pq-3r$ (which is $x^3+y^3+z^3+3xyz\ge x^2(y+z)+y^2(z+x)+z^3(x+y)$, Schur). Note that the Schur inequality becomes an equality if and only if two involved variables are equal, this is also the case we obtain equality in $P\ge \sqrt K$. We restate this as $P^2\ge K$, and further as $(x+y+z)^2\ge K(x^2y^2z^2+1)$. So we consider the minimization of $F$, $$ F(p,q,r):=p^2-K(r^2+1)\ , \qquad\text{ constrained to } \underbrace{r^2-(q^2-2pr)+2(p^2-2q)-8}_{h(p,q,r)}=0\ . $$


Lagrange multiplicators. In case of a local extremal value in the domain (two-dimensional) $h(p,q,r)=0$, with boundaries given by the above boundary conditions, the coresponding extremal point satisfies $0=G'_p=G'_q=G'_r=G'_m$ for $$ G(p,q,r;m):= F(p,q,r)-mh(p,q,r)\ . $$ The corresponding system is: $$ \left\{ \begin{aligned} 0&=2p-m(2r+4p)\ ,\\ 0&=-m(-2q-4)\ ,\\ 0&=-2Kr-m(2r+2p)\ ,\\ 0&=h(p,q,r)\ . \end{aligned} \right. $$ The condition $0=G'_q$ makes everything clear. ($F$ does not depend on $q$.) The factor $2q+4$ does not vanish in the given region. Also, $m=0$ leads to $p=r=0$, again outside of the sight. So any extremal value for $F$ constrained to $h=0$ is a boundary point.

Each of the boundary conditions $p=3$ and/or $q=3$ and/or $r=1$ and/or $p^2=3q$ leads to $x=y=z$ thus to $a=b=c$, and the common value is $1$ from the given $(a,b,c)$-condition. In this case $x=y=z=\sqrt 2$, $p=3\sqrt 2$, $r=2\sqrt 2$, and $$ \begin{aligned} F(3\sqrt 2,*,2\sqrt 2) &=(3\sqrt 2)^2-K((2\sqrt2)^2+1)=18-9K=9(2-K) \\ &= \frac 9{10} (7-4\sqrt 3) =\frac 9{10} \cdot \frac {49-48}{7+4\sqrt 3} >0\ .e \end{aligned} $$


It remains to check the remained boundary condition, the Schur condition on $p,q,r$, taken with equality. This happens iff two values among $x,y,z$ (equivalently among $a,b,c$) are equal. Here, we can go back to $P$, assume $a=c$, write $b$ in terms of $a$ as $b=b(a)=2(2-a)/(a^2+1)$, so $a\in[0,2]$, and minimize the ugly function in one variable

$$a\to g(a)=\Bigg( \ 2\sqrt{a+1} +\sqrt{b(a)+1}\ \Bigg)^2-K\Bigg(\ 1 + (a+1)\sqrt{b(a)+1} \ \Bigg)\ , \qquad g:[0,2]\to\Bbb R\ . $$ In a plot:

mse problem 4799787

I hope, everybody who considered the problem will find from here her or his way to proceed.


Humanly, the problem starts now, i have no chance to finish in time as a human. The reason is the following one. We have a more or less complicated function. Its study must somehow involve analytic tools like taking derivatives, consider critical points, compute the value in these points. Then also compute the values at the ends of the interval $[0,2]$, and finally decide which candidate wins the minimum prize.

Well, this consideration must then find the critical point $a=1$, which is easy to check in any system of equations, but also that local max between $1$ and $ 2$. And this point is no longer "easy". So let us work algebraically with the aid of a computer. We are searching for globally minimal points $(a,b,c)$ for $P$ with $a=c$. Let us pass to the $(x,y,z)$ coordinates via $a=x^2-1$, $b=y^2-1$, the condition $a=c$ becomes $x=z$, so we want to minimize $$ \begin{aligned} F(x,y ) &= (2x+y)^2-K(x^4y^2+1)\ ,\\ &\qquad\text{ constrained to } \\ 0 &= \underbrace{2(x^2-1)+(y^2-1)+(x^2-1)^2(y^2-1)-4}_{h(x,y)}\ . \end{aligned} $$ We have two new functions $F,h$. Lagrange multiplicators for them. We obtain an ugly algebraic system of high degree. Let us ask the machine for solutions with $x,y\ge 1$.

L.<w> = QuadraticField(3)
K = (1 + 2*w)^2/10
R.<x, y, m> = PolynomialRing(L)

F = (2x + y)^2 - K(x^4y^2 + 1) h = 2(x^2 - 1) + (y^2 - 1) + (x^2 - 1)^2*(y^2 - 1) - 4

J = R.ideal([diff(F - m*h, v) for v in (x, y, m)]) variety = J.variety(ring=AA) for dic in variety: x0, y0, m0 = dic[x], dic[y], dic[m] if not(x0 >= 1 and y0 >= 1): continue a0, b0 = x0^2 - 1, y0^2 -1 print(f"Critical point with components:") print(f"(x, y) = ({x0}, {y0})") print(f"(a, b) = ({a0}, {b0})") print(f" F-value = {F.subs(x=x0, y=y0)}")

And we obtain:

Critical point with components:
(x, y) = (1.414213562373095?, 1.414213562373095?)
(a, b) = (1, 1)
    F-value = 0.06461709275204174?
Critical point with components:
(x, y) = (1.610339275596270?, 1.109030006353267?)
(a, b) = (1.593192582527918?, 0.2299475549919257?)
    F-value = 0.2710105546461977?

This values are now compared with the values at the extremities of the interval, and the value in $(a,b)=(2,0)$, corresponding to $(x,y)=(\sqrt 3,1)$ wins, the function $F$ is zero, the global minimum.

dan_fulea
  • 37,952
  • I have some questions. (1) There are some typos. It should be $K=\frac1{10}(1+2\sqrt 3)^2=\frac 1{10}(13+{\color{red} {4\sqrt{3}}})$ and $p^2 \ge {\color{red} {3q}}$. – River Li Nov 17 '23 at 03:20
  • (2) You want to minimize $F(p, q, r) = p^2 - K(r^2 + 1)$ on the domain $p\ge 3, q \ge 3, r \ge 1, p^2 \ge 3q$ and $p(p^2 - 3q) + 6r \ge pq - 3r$ and $r^2 -(q^2-2pr)+2(p^2-2q)-8=0$. However, $F(p, q, r)$ can be negative on this domain. For example, when $p = 6, q = 11, r = \sqrt{137} - 6$, all the condition above are met; However, $F(6, 11, \sqrt{137} - 6) = -30.84636990$. See next comment. – River Li Nov 17 '23 at 03:20
  • 1
    The reason is that: This domain is only a subset of the original domain, which is not enough for $F(p, q, r) \ge 0$ (the original domain is enough, certainly). For a $(p, q, r)$ in your domain, when we solve the cubic $u^3 - pu^2 + qu - r = 0$ for $x, y, z$, we can not ensure $x, y, z\ge 1$ (e.g the above example). – River Li Nov 17 '23 at 03:21
0

If you trust in computer based proofs, this can be done with Maple >=2018 as follows. First, we numerically solve the optimization problem

Optimization:-Minimize((sqrt(a+1)+sqrt(1+b)+sqrt(1+c))/sqrt(a*b+a*c+b*c+6), {a >= 0, b >= 0, c >= 0, a*b*c+a+b+c = 4});

$$[ 1.41421356237309515,[a= 1.0,b= 1.0,c= 1.0]] $$

The above result suggests that the minimum $\sqrt 2$ is attained at $(a=1,b=1,c=1)$.

To check it, we eliminate $a$ from the target function by

solve(a*b*c+a+b+c = 4, a);

-(-4+b+c)/(b*c+1)

f := eval((sqrt(a+1)+sqrt(1+b)+sqrt(1+c))/sqrt(a*b+a*c+b*c+6), a = -(-4+b+c)/(b*c+1));

f := (sqrt(-(-4+b+c)/(b*c+1)+1)+sqrt(1+b)+sqrt(1+c))/sqrt(-(-4+b+c)*b/(b*c+1)-c*(-4+b+c)/(b*c+1)+b*c+6)

Third, we use the second derivative test with Maple by the command

Student:-MultivariateCalculus:-SecondDerivativeTest(f, [b, c] = [1, 1]);

LocalMin = [[1, 1]], LocalMax = [], Saddle = []

Of course, all that may be mimicking by hand.

Addition. As I was informed by @V.S.e.H., this is a local minimum only. A global minimum can be found with

DirectSearch:-GlobalOptima((sqrt(a+1)+sqrt(1+b)+sqrt(1+c))/sqrt(a*b+a*c+b*c+6), {a >= 0, b >= 0, c >= 0, a*b*c+a+b+c = 4});

[1.41167288061134, [a = 1.99999839031817, b = 3.18835950887659*10^(-13), c = 2.00000161802040], 2167]

The result suggests that three global minimums are attained at the corners of the triangle (the feasible set). Now we investigate the behavior of the target function on the side by usual tools of calculus with Maple.

eval((sqrt(a+1)+sqrt(1+b)+sqrt(1+c))/sqrt(a*b+a*c+b*c+6), {b = 0, c = 4-a});

(sqrt(a+1)+1+sqrt(5-a))/sqrt(6+a*(4-a))

minimize((sqrt(a+1)+1+sqrt(5-a))/sqrt(6+a*(4-a)), a = 0 .. 4, location);

(1/10)*(2*sqrt(3)+1)*sqrt(10), {[{a = 2}, (1/10)*(2*sqrt(3)+1)*sqrt(10)]}

There is no need to consider other sides because of symmetry. I repeat all that may be mimicked by hand.

user64494
  • 5,954
  • 2
    The global minimum is not attained at $a=b=c=1$. MAPLE has found a local minimum, not a global one. – V.S.e.H. Nov 11 '23 at 15:14