We can rewrite the last formula given by @granularbastard as
$$
\eqalign{
& \left( {2m} \right)!!\prod\limits_{k = 1}^m {x_k } = \cr
& = \sum\limits_{\left( {s_1 ,s_1 , \cdots ,s_m } \right) \in \left\{ { - 1,1} \right\}^m }
{\left( {\left( {\prod\limits_{k = 1}^m {s_k } } \right)\left( {\sum\limits_{k = 1}^m {s_k x_k } } \right)^m } \right)} = \cr
& = \sum\limits_{\left( {s_1 ,s_1 , \cdots ,s_m } \right) \in \left\{ { - 1,1} \right\}^m }
{\left( {s_m \left( {\prod\limits_{k = 1}^{m - 1} {s_k } } \right)\left( {\sum\limits_{k = 1}^{m - 1}
{s_k x_k } + s_m x_m } \right)^m } \right)} = \cr
& = \sum\limits_{\left( {s_1 ,s_1 , \cdots ,s_{m - 1} } \right) \in \left\{ { - 1,1} \right\}^{m - 1} }
{\left( {\left( {\prod\limits_{k = 1}^{m - 1} {s_k } } \right)\left( {\sum\limits_{k = 1}^{m - 1} {s_k x_k } + x_m } \right)^m } \right)} + \cr
& - \sum\limits_{\left( {s_1 ,s_1 , \cdots ,s_{m - 1} } \right) \in \left\{ { - 1,1} \right\}^{m - 1} }
{\left( {\left( {\prod\limits_{k = 1}^{m - 1} {s_k } } \right)\left( {\sum\limits_{k = 1}^{m - 1} {s_k x_k } - x_m } \right)^m } \right)} = \cr
& = \sum\limits_{\left( {s_1 ,s_1 , \cdots ,s_{m - 1} } \right) \in \left\{ { - 1,1} \right\}^{m - 1} }
{\left( {\left( {\prod\limits_{k = 1}^{m - 1} {s_k } } \right)\sum\limits_{j = 0}^m
{\left( \matrix{ m \cr j \cr} \right)x_m ^j \left( {\sum\limits_{k = 1}^{m - 1} {s_k x_k } } \right)^{m - j} } } \right)} + \cr
& - \sum\limits_{\left( {s_1 ,s_1 , \cdots ,s_{m - 1} } \right) \in \left\{ { - 1,1} \right\}^{m - 1} }
{\left( {\left( {\prod\limits_{k = 1}^{m - 1} {s_k } } \right)\sum\limits_{j = 0}^m {\left( \matrix{ m \cr j \cr} \right)
\left( { - 1} \right)^j x_m ^j \left( {\sum\limits_{k = 1}^{m - 1} {s_k x_k } } \right)^{m - j} } } \right)} = \cr
& = 2\sum\limits_{\left( {s_1 ,s_1 , \cdots ,s_{m - 1} } \right) \in \left\{ { - 1,1} \right\}^{m - 1} }
{\left( {\left( {\prod\limits_{k = 1}^{m - 1} {s_k } } \right)\sum\limits_{j = 0}^m {\left( \matrix{ m \cr 2j + 1 \cr} \right)
x_m ^{2j + 1} \left( {\sum\limits_{k = 1}^{m - 1} {s_k x_k } } \right)^{m - 1 - 2j} } } \right)} = \cr
& = 2\sum\limits_{j = 0}^m {\left( \matrix{ m \cr 2j + 1 \cr} \right)x_m ^{2j + 1}
\sum\limits_{\left( {s_1 ,s_1 , \cdots ,s_{m - 1} } \right) \in \left\{ { - 1,1} \right\}^{m - 1} }
{\left( {\prod\limits_{k = 1}^{m - 1} {s_k } } \right)\left( {\sum\limits_{k = 1}^{m - 1} {s_k x_k } } \right)^{m - 1 - 2j} } } \cr}
$$
It remains to demonstrate that
$$
\sum\limits_{\left( {s_1 ,s_1 , \cdots ,s_{m - 1} } \right) \in \left\{ { - 1,1} \right\}^{m - 1} }
{\left( {\prod\limits_{k = 1}^{m - 1} {s_k } } \right)\left( {\sum\limits_{k = 1}^{m - 1} {s_k x_k } } \right)^q }
= 0\quad \left| {\;0 \le q < m-1} \right.
$$
as numerically it checks for the first few values of m.
Upon that we have the recursion step
$$
\eqalign{
& \left( {2m} \right)!!\prod\limits_{k = 1}^m {x_k } =
2mx_m \sum\limits_{\left( {s_1 ,s_1 , \cdots ,s_{m - 1} } \right) \in \left\{ { - 1,1} \right\}^{m - 1} }
{\left( {\prod\limits_{k = 1}^{m - 1} {s_k } } \right)\left( {\sum\limits_{k = 1}^{m - 1} {s_k x_k } } \right)^{m - 1} } = \cr
& = \left( {2m} \right)!!\prod\limits_{k = 1}^m {x_k } = 2mx_m \left( {2\left( {m - 1} \right)} \right)!!
\prod\limits_{k = 1}^{m - 1} {x_k } \cr}
$$
Indeed, taking the derivative wrt $x_m$ of both sides
$$
\eqalign{
& {\partial \over {\partial x_m }}\left( {2m} \right)!!\prod\limits_{k = 1}^m {x_k } =
\left( {2m} \right)!!\prod\limits_{k = 1}^{m - 1} {x_k } = \cr
& = {\partial \over {\partial x_m }}\sum\limits_{\left( {s_1 ,s_1 , \cdots ,s_m } \right) \in \left\{ { - 1,1} \right\}^m }
{\left( {\left( {\prod\limits_{k = 1}^m {s_k } } \right)\left( {\sum\limits_{k = 1}^m {s_k x_k } } \right)^m } \right)} = \cr
& = m\sum\limits_{\left( {s_1 ,s_1 , \cdots ,s_m } \right) \in \left\{ { - 1,1} \right\}^m }
{\left( {\left( {s_m ^2 \prod\limits_{k = 1}^{m - 1} {s_k } } \right)\left( {\sum\limits_{k = 1}^m {s_k x_k } } \right)^{m - 1} } \right)} = \cr
& = m\sum\limits_{\left( {s_1 ,s_1 , \cdots ,s_m } \right) \in \left\{ { - 1,1} \right\}^m }
{\left( {\left( {\prod\limits_{k = 1}^{m - 1} {s_k } } \right)\left( {\sum\limits_{k = 1}^m {s_k x_k } } \right)^{m - 1} } \right)} = \cr
& = {\partial \over {\partial x_m }}2\sum\limits_{j = 0}^m {\left( \matrix{ m \cr 2j + 1 \cr} \right)x_m ^{2j + 1}
\sum\limits_{\left( {s_1 ,s_1 , \cdots ,s_{m - 1} } \right) \in \left\{ { - 1,1} \right\}^{m - 1} }
{\left( {\prod\limits_{k = 1}^{m - 1} {s_k } } \right)\left( {\sum\limits_{k = 1}^{m - 1} {s_k x_k } } \right)^{m - 1 - 2j} } } \cr
& = 2\sum\limits_{j = 0}^m {\left( {2j + 1} \right)\left( \matrix{
m \cr
2j + 1 \cr} \right)x_m ^{2j} \sum\limits_{\left( {s_1 ,s_1 , \cdots ,s_{m - 1} } \right) \in \left\{ { - 1,1} \right\}^{m - 1} }
{\left( {\prod\limits_{k = 1}^{m - 1} {s_k } } \right)\left( {\sum\limits_{k = 1}^{m - 1} {s_k x_k } } \right)^{m - 1 - 2j} } } \Rightarrow \cr
& \Rightarrow \left\{ \matrix{
{{\left( {2m} \right)!!} \over m}\prod\limits_{k = 1}^{m - 1} {x_k } =
\sum\limits_{\left( {s_1 ,s_1 , \cdots ,s_m } \right) \in \left\{ { - 1,1} \right\}^m }
{\left( {\left( {\prod\limits_{k = 1}^{m - 1} {s_k } } \right)\left( {\sum\limits_{k = 1}^m {s_k x_k } } \right)^{m - 1} } \right)} \hfill \cr
\sum\limits_{\left( {s_1 ,s_1 , \cdots ,s_{m - 1} } \right) \in \left\{ { - 1,1} \right\}^{m - 1} }
{\left( {\prod\limits_{k = 1}^{m - 1} {s_k } } \right)\left( {\sum\limits_{k = 1}^{m - 1} {s_k x_k } } \right)^{m - 1 - 2j} } =
0\quad \left| {\;0 < j} \right. \hfill \cr} \right. \cr}
$$
Thus the combined hypothesis
$$
\left( \matrix{
\left( {2m} \right)!!\prod\limits_{k = 1}^m {x_k } = \sum\limits_{\left( {s_1 ,s_1 , \cdots ,s_m } \right)
\in \left\{ { - 1,1} \right\}^m } {\left( {\left( {\prod\limits_{k = 1}^m {s_k } } \right)
\left( {\sum\limits_{k = 1}^m {s_k x_k } } \right)^m } \right)} \wedge \hfill \cr
\wedge \left( {\left[ {0 < j \le {{m - 1} \over 2}} \right]\sum\limits_{\left( {s_1 ,s_1 , \cdots ,s_{m - 1} } \right)
\in \left\{ { - 1,1} \right\}^{m - 1} } {\left( {\prod\limits_{k = 1}^{m - 1} {s_k } } \right)
\left( {\sum\limits_{k = 1}^{m - 1} {s_k x_k } } \right)^{m - 1 - 2j} } = 0} \right) \hfill \cr} \right)
$$
(the square bracket denotes the Iverson bracket)
which is true for $m=1,2,3$ is demonstrated by induction.