I am looking for a short way to write sums of combinations of $x_1,x_2,\ldots,x_n$ for a practical application. It can be easier explained using an example:
For $n=3$ there are $2^3=8$ combinations to sum $x_1,x_2,x_3$ using all signed combinations: $$C_3=-f\left(-x_1-x_2-x_3\right)+f\left(x_1-x_2-x_3\right)+f\left(-x_1+x_2-x_3\right)-f\left(x_1+x_2-x_3\right)+f\left(-x_1-x_2+x_3\right)-f\left(x_1-x_2+x_3\right)-f\left(-x_1+x_2+x_3\right)+f\left(x_1+x_2+x_3\right)$$ Every combination are summed arguments of a function $f$ and has a different sign sequence. The signs of $f$ are negative/positive if the number of negative signs in the arguments are odd/even.
For $n=4$ there are already $2^4=16$ combinations and it is quite ineffective to write them all down: $$C_4=f\left(-x_1-x_2-x_3-x_4\right)-f\left(x_1-x_2-x_3-x_4\right)-f\left(-x_1+x_2-x_3-x_4\right)+f\left(x_1+x_2-x_3-x_4\right)-f\left(-x_1-x_2+x_3-x_4\right)+f\left(x_1-x_2+x_3-x_4\right)+f\left(-x_1+x_2+x_3-x_4\right)-f\left(x_1+x_2+x_3-x_4\right)-f\left(-x_1-x_2-x_3+x_4\right)+f\left(x_1-x_2-x_3+x_4\right)+f\left(-x_1+x_2-x_3+x_4\right)-f\left(x_1+x_2-x_3+x_4\right)+f\left(-x_1-x_2+x_3+x_4\right)-f\left(x_1-x_2+x_3+x_4\right)-f\left(-x_1+x_2+x_3+x_4\right)+f\left(x_1+x_2+x_3+x_4\right)$$
It is clear that for higher $n$ a short notation is needed. I do not look for a program code.