Let $B$ be a $n\times n$ matrix and let $X$ be the set of all eigenvalues of $B$. Prove that if $|m|<1$ then $\lim \limits_{k\rightarrow\infty}B^k=0$, where $m=\max X$.
Thanks.
Actually, there isn't a order involved. Sorry. The correct question is:
Let $B$ be a $n\times n$ matrix, $X$ be the set of all eigenvalues of $B$ and $|X|=\{|x|;x\in X\}$. Prove that if $|m|<1$ then $\lim \limits_{k\rightarrow\infty}B^k=0$, where $m=\max |X|$.