I am reading "Matrix Calculus"(in Japanese) by Masahiko Saito.
There is the following proposition in this book:
Let $I$ be an identity matrix.
Let $C$ be a square matrix.
Let $A=\begin{pmatrix} I&B \\ O&C \end{pmatrix}$.
If the absolute values of all the eigenvalues of $C$ are smaller than $1$, then $I-C$ is non-singular and $$\lim_{p\to\infty} A^p = \begin{pmatrix}I&B(I-C)^{-1}\\O&O\end{pmatrix}.$$
Proof:
By assumption, $I-C$ is non-singular.
By the previous proposition, $$A^p=\begin{pmatrix} I&B(I-C)^{-1}(I-C^p) \\ O&C^p\end{pmatrix}.$$
By theorem 3.3.8, $$\lim_{p\to\infty} C^p = O.$$
Therefore, $$\lim_{p\to\infty} A^p = \begin{pmatrix}I&B(I-C)^{-1}\\O&O\end{pmatrix}.$$
We must show $I-C$ is non-singular, but by mistake, the author wrote it is non-singular by assumption.
I wanna know a proof of the following proposition:
If the absolute values of all the eigenvalues of $C$ are smaller than $1$, then $I-C$ is non-singular.
My attempt:
$(I-C)(I+C+\dots+C^{p-1}) = I - C^p$.
I know $\lim_{p\to\infty} C^p = O$.
So, $\lim_{p\to\infty} (I - C^p) = I$.