How to prove $$\left\{\frac{p^a}{q^b}:p,q\in\mathbb{Z}\right\}=\left\{\frac{j^{\gcd(a,b)}}{k^{\gcd(a,b)}}:j,k\in\mathbb{Z}\right\}$$ for $a,b\in\mathbb{N}$?
First, is this identity correct?
For example if $a=1$
$$\left\{\frac{p}{q^b}:p,q\in\mathbb{Z}\right\}=\left\{\frac{j}{k}:j,k\in\mathbb{Z}\right\}$$
If we set $j=p$ and $k=q$
$$\left\{\frac{j}{k}:j,k\in\mathbb{Z}\right\}=\left\{\frac{j(k^{b-1})}{k(k^{b-1})}\right\}=\left\{\frac{j}{k^b}:j,k\in\mathbb{Z}\right\}=\left\{\frac{p}{q^b}:p,q\in\mathbb{Z}\right\}$$
However, this is not a formal way of proving this case for $a=1$. I have to show
$$\left\{\frac{p}{q^b}:p,q\in\mathbb{Z}\right\}\subseteq\left\{\frac{j}{k}:j,k\in\mathbb{Z}\right\} \land \left\{\frac{j}{k}:j,k\in\mathbb{Z}\right\}\subseteq\left\{\frac{p}{q^b}:p,q\in\mathbb{Z}\right\}$$
How do I do this for $a=1$? How do I do this for $a\in\mathbb{N}$?