Is it true that
$$\left\{\frac{m^2}{n!}:m,n\in\mathbb{N}\right\}=\mathbb{Q}^{+} \tag{1}$$
My intuition comes from the fact that $m$ and $n$-increases $m^2=p_1^{2e_1} p_2^{2e_2}...p_s^{2e_s}$ where $p_1,...,p_s$ are the first $s$ primes and $n!=q_1^{f_1} q_2^{f_2}\cdot\cdot\cdot q_r^{f_r}$ where $q_1,...,q_r$ are the first $r$ primes
The following answer already shows:
$$\left\{\frac{m^a}{n^b}:m,n\in\mathbb{N}\right\}=\left\{\frac{c^{\gcd(a,b)}}{d^{\gcd(a,b)}}:c,d\in\mathbb{N}\right\}$$
Since
$$\left\{\frac{m^2}{n!}:m,n\in\mathbb{N}\right\}=\left\{\frac{p_1^{2e_1} p_2^{2e_2}...p_s^{2e_s}}{q_1^{f_1} q_2^{f_2}\cdot\cdot\cdot q_r^{f_r}}:e_1,...,e_r,f_1,...,f_r\in\mathbb{N}\right\}$$
and each element in $2e_{1},...,2e_r$ is relatively prime to each element in $f_{1},...,f_{r}$
We can assume that
$$\left\{\frac{m^2}{n!}:m,n\in\mathbb{N}\right\}=\mathbb{Q}^{+} \tag{1}$$
holds true.
If this is correct can we generalize this to:
$$\left\{\frac{m^{p}}{n!}:m,n\in\mathbb{N}\right\}=\mathbb{Q}^{+}$$
Where $p\in\mathbb{Z}$
Is this also true?