Suppose we choose a particular Folner Sequence of $\mathbb{Q}$ such as $F_n=\left\{\frac{p}{2^k(2q+1)}:p,q\in\mathbb{Z},k\in\mathbb{N},\gcd\left(p,2^k(2q+1) \right)=1,2^k\le n, |2q+1| \le n, \left|\frac{p}{2^k(2q+1)}\right|\le n\right\}$? Is this a Folner Sequence of $\mathbb{Q}$?
How do we calculate the density of $A$, where $A\subseteq{\mathbb{Q}}$.
(Informally we define the density of $A$ as)
$$D(A)=\lim_{n\to\infty}\frac{\left|A\cap F_n\right|}{\left|F_n\right|}$$
(Formally we use Ultrafilters to replace $D(A)$ as a probability measure.)
In order to find $|A\cap F_n|$, we must present the intersection as a set with fully reduced elements. I will attempt an example but I don't know if I am correct. If I am not how do we correctly calculate the answer?
If $A=\left\{\frac{f^3}{g^6}:f,g\in\mathbb{Z},g\neq 0\right\}$ and $F_n=\left\{\frac{p}{2^k(2q+1)}:p,q\in\mathbb{Z},k\in\mathbb{N},\gcd\left(p,2^k(2q+1) \right)=1,2^k\le n, |2q+1| \le n, \left|\frac{p}{2^k(2q+1)}\right|\le n\right\}$, the cardinality of the interesection of $F_n$ and interval $[0,1]$ is $|F_n\cap[0,1]|=\sum\limits_{|k|\le\lfloor\log_2(n) \rfloor}\sum\limits_{|q|\le\lfloor (n-1)/2\rfloor}\phi(2^k(2q+1))=\sum\limits_{|k|\le \lfloor \log_{2}(n) \rfloor}\phi(2^k)\sum\limits_{|q|\le \lfloor (n-1)/2\rfloor}\phi(2q+1)\approx\frac{2}{\pi^2}n^2$ for $n\in\mathbb{N}$ using this and $|F_n|\lessapprox(2n)\sum\limits_{q=1}^{n}\phi(q)\approx(2n)\cdot\frac{2}{\pi^2}n^2$, where $\sum\limits_{q=1}^{n}\phi(q)$ is Euler's Summatory function. We must present $|A\cap F_n|$ in a similar way.
For example, take $A=\left\{\frac{f^3}{g^6}:f,g\in\mathbb{Z},g \neq 0\right\}$. Using the identity I found here, $\left\{\frac{f^3}{g^6}:f,g\in\mathbb{Z},g\neq 0\right\}=\left\{\frac{c^2}{d^2}:c,d\in\mathbb{Z}, d\neq 0\right\}=\left\{\frac{c^2}{2^{2k}(2d+1)^2}:c,d\in\mathbb{Z}, 2d+1 \le n, 2^{2k}\le n,\gcd(c^2,d^2)=1, d\neq 0\right\}$.
Using the answer to this, we can create an asymptotic series of $\left|A\cap F_n\right|=\left|\left\{\frac{c^2}{d^2}:c,d\in\mathbb{Z},\gcd(c^2,d^2)=1,d\neq 0,d^2\le n,\left|\frac{c^2}{d^2}\right|\le n\right\}\right|=F(\sqrt{n})$ where $F(n)$ is the asymptotic series of $(2n)\sum\limits_{d=1}^{\lfloor n \rfloor}\sqrt{\phi(d^2)}$. I do not understand @Reuns answer so I do not know what the asymptotic series would equal (I will call this $m(n)$). Our answer should be
$$D(A)\lessapprox\lim_{n\to\infty}\frac{|A\cap F_n|}{|F_n|}=\lim_{n\to\infty}\frac{(2n)m(n)}{(2n)\frac{3}{\pi}n^3}$$
I don't what the lower bound is but am I correct so far? If not what is the lower and upper bound?
(Using Generalized Euler's Phi Function can be helpful)
Finally, if we generalized $A$ into $\left\{\frac{s_1}{s_2}\right\}$, where $s_1:D_1\cap\mathbb{Z}\to R_1$, $s_2:D_2\cap\mathbb{Z}\to R_2$ such that $D_1,D_2$ is the domain of $s_1,s_2$ and $R_1,R_2$ is the range of $s_1,s_2$; then what is the asymptotic series of $\left|A\cap F_n \right|$? What would be the density of $A$ if we took a Folner sequence of $\left\{\sqrt[b]{\frac{p}{q}}:p,q\in\mathbb{N},q\neq 0\right\}$, where $b\in\mathbb{Q}$ is a constant variable?