We have
$\Omega$ = outcome space.
$\omega$ = a particular outcome (that is, $\omega \in \Omega$).
If $Z$ is an event then it is a subset of $\Omega$ (that is, $Z \subseteq \Omega)$. (*See footnote for an additional detail.)
Indeed the random variable $X$ is a function $X:\Omega \rightarrow \mathbb{R}$. Suppose $A$ is some given subset of real numbers. Then the following is a subset of $\Omega$:
$$ \{\omega \in \Omega : X(\omega) \in A\} $$
We interpret this as:
\begin{align}
\{\cdot\} \quad &= \quad \mbox{"The set of ..."}\\
\omega \in \Omega \quad &= \quad \mbox{"outcomes $\omega$ in the outcome space $\Omega$...}" \\
: \quad &= \quad \mbox{"such that..."}\\
X(\omega) \in A \quad &= \quad \mbox{"$X(\omega)$ is in the set $A$"}
\end{align}
Put all together it reads:
The set of outcomes $\omega$ in the outcome space $\Omega$ such that $X(\omega)$ is in the set $A$.
Notice that
$$ \{\omega \in \Omega : X(\omega) \in A\} \subseteq \Omega$$
Example:
\begin{align}
\Omega &= \{blue, red, green, pink\}\\
X(blue) &= 2\\
X(red) &= 2.5\\
X(green) &=0\\
X(pink) &=-3\\
A &= \{2, -3, 8\}\\
B &= \{2.5, 0, -3\}\\
C &= \{x \in \mathbb{R} : x\leq 1\} = (-\infty, 1]
\end{align}
Then
\begin{align}
\{\omega \in \Omega : X(\omega) \in A\} &= \{blue, pink\}\\
\{\omega \in \Omega : X(\omega) \in B\} &= \{red, green, pink\}\\
\{\omega \in \Omega : X(\omega) \in C\} &= \: ??? \quad \quad [\mbox{Exercise}]\\
\{\omega \in \Omega : X(\omega) \in A \cap B\} &= \: ???\quad \quad [\mbox{Exercise}]\\
\{\omega \in \Omega : X(\omega) \notin A\} &= \: ???\quad \quad [\mbox{Exercise}]\\
\{\omega \in \Omega : X(\omega) > 0\} &= \: ??? \quad \quad[\mbox{Exercise}]\\
\{\omega \in \Omega : X(\omega) \leq 0\} &= \: ??? \quad \quad[\mbox{Exercise}]\\
\{\omega \in \Omega : X(\omega) \leq 100\} &= \: ??? \quad \quad[\mbox{Exercise}]\\
\{\omega \in \Omega : X(\omega) \leq -78\} &= \: ??? \quad \quad[\mbox{Exercise}]
\end{align}
How many possible events are there (for this example)?