Let's say $X \sim \mathcal{N(0,\Sigma)}$ where $\Sigma \in \mathbb{R}^{n \times n}$. Is there anything we can say about
$$\mathbb{E}_{x\sim X}\left[\sqrt{\sum_i^n x_i^2}\right]$$
Let's say $X \sim \mathcal{N(0,\Sigma)}$ where $\Sigma \in \mathbb{R}^{n \times n}$. Is there anything we can say about
$$\mathbb{E}_{x\sim X}\left[\sqrt{\sum_i^n x_i^2}\right]$$
The question is vague. A crude upper bound can be obtained with Jensen's inequality: $$E(\|X\|_2)\leq \sqrt{E(\|X\|_2^2)}=\sqrt{\sum_{i=1}^n \Sigma_{ii}} = \sqrt{\operatorname{trace}(\Sigma)}$$