Given block matrices $\mathbf{A}$ and $\mathbf{B}$ which are block transposes of each other, i.e.,
$$\mathbf{A} = \left[ \begin{array}{cccc} \mathbf{M}_{11} & \mathbf{M}_{21} & \dots & \mathbf{M}_{J1}\\ \mathbf{M}_{12} & \mathbf{M}_{22} & \dots & \mathbf{M}_{J2}\\ \vdots & \vdots & \ddots & \vdots\\ \mathbf{M}_{1K} & \mathbf{M}_{2K} & \dots & \mathbf{M}_{JK} \end{array} \right]$$
$$\mathbf{B} = \left[\begin{array}{cccc} \mathbf{M}_{11} & \mathbf{M}_{12} & \dots & \mathbf{M}_{1K}\\ \mathbf{M}_{21} & \mathbf{M}_{22} & \dots & \mathbf{M}_{2K}\\ \vdots & \vdots & \ddots & \vdots\\ \mathbf{M}_{J1} & \mathbf{M}_{J2} & \dots & \mathbf{M}_{JK} \end{array} \right]$$
where $\mathbf{M}_{jk} \in \mathbb{C}^{n \times m}$, I'd like show that the non-zero eigenvalues of $\mathbf{A}' \mathbf{A}$ and $\mathbf{B}' \mathbf{B}$ are equivalent, where $A' = conj(A^T)$ is the conjugate transpose.
This is clearly true if $\mathbf{A}=\mathbf{B}'$ (e.g. see here), but can this result be extended to the block-transpose case?
If it matters, $\mathbf{M}_{jk}$ is a non-square lower-triangular toeplitz matrix for my particular problem, though I'm also interested if the result holds in general as well. For what its worth, numerical analysis suggests that this is true, at least for the special lower-triangular toeplitz case.
Shoot - I had computed the spectrum in MATLAB for an initial data set which initially seemed to suggest that this conjecture was true (at least to the limit of numerical noise). However further investigation of some smaller examples built from random matrices show that this is false... Nevertheless, the eigenvalue distribution does seem to be remarkably similar, at least for the cases I looked at. And it is true that trace(A'A) = trace(B'B). If there is anything else interesting that can be said about the relationship between the spectrum of A'A and B'B, I am still very interested. Thanks!
This is the eigenvalues of the actual dataset I am interested in, computed in MATLAB.