Again, this is not exactly an answer to your question but I found exact solutions to an ODE very similar to the one on the bottom of your question.
Define:
\begin{eqnarray}
p&:=&\frac{b_1}{4}(-2+a_1-c_1)\\
q&:=&\frac{a_1+c_1}{4}(-2+a_1-c_1)
\end{eqnarray}
and consider the following ODE:
\begin{eqnarray}
x(x-1)(x+1) \frac{d^2 y(x)}{d x^2} + \left( a_1 x^2+b_1 x+c_1\right) \frac{d y(x)}{d x} + (p+q x) y(x)=0
\end{eqnarray}
Then we have:
\begin{eqnarray}
y(x):=\frac{1}{m(x)} \left( C_1 F_{2,1} \left[ a,b,c,f(x)\right] + C_2 [f(x)]^{1-c} F_{2,1}\left[a+1-c,b+1-c,2-c,f[x]\right]\right)
\end{eqnarray}
where
\begin{eqnarray}
m(x)&:=& x^{\frac{1}{2} (-c-c_1)} (x+1)^{a+\frac{1}{4} (a_1+4 b-b_1+c_1-2)} (1-x)^{\frac{1}{4} (-4 a+a_1-4 b+b_1+4 c+c_1-2)}\\
f(x)&:=&\frac{4 x}{(x+1)^2}
\end{eqnarray}
and
\begin{eqnarray}
\left(
\begin{array}{r} a \\ b \\ c \end{array}
\right) =
\left\{
\left(
\begin{array}{r} \frac{1}{4}(2-a_1-3 c_1) \\ \frac{1}{4}(-b_1-2 c_1) \\ -c_1 \end{array}
\right),
\left(
\begin{array}{r} \frac{1}{4}(-2+a_1- c_1) \\ \frac{1}{4}(b_1-2 c_1) \\ -c_1 \end{array}
\right)
\right\}
\end{eqnarray}
In[2]:= a1 =.; b1 =.; c1 =.;
a =.; b =.; c =.; x =.;
f[x_] = 4 x/(x + 1)^2;
m[x_] = (1 - x)^(1/4 (-2 - 4 a + a1 - 4 b + b1 + 4 c + c1)) x^(
1/2 (-c - c1)) (1 + x)^(a + 1/4 (-2 + a1 + 4 b - b1 + c1));
{p, q} = { b1 (-2 + a1 - c1), (-2 + a1 - c1) (a1 + c1)}/4;
a = {1/4 (2 - a1 - 3 c1), 1/4 (-2 + a1 - c1)};
b = {1/4 (-b1 - 2 c1), 1/4 (b1 - 2 c1)};
c = {-c1, -c1};
{b, c} = {(-2 b1 + a1 b1 - 8 a c1 + b1 c1 - 4 c1^2)/(
8 (2 a + c1)), -c1};
eX = (x (x - 1) (x + 1) D[#, {x, 2}] + (a1 x^2 + b1 x + c1) D[#,
x] + (p + q x) #) & /@ {1/
m[x] (C[1] Hypergeometric2F1[a, b, c, f[x]] +
C[2] f[x]^(1 - c) Hypergeometric2F1[a + 1 - c, b + 1 - c,
2 - c, f[x]])};
{a1, b1, c1, x} = RandomReal[{0, 1}, 4, WorkingPrecision -> 50];
Simplify[eX]
Out[13]= {{0.*10^-47 C[1] + 0.*10^-48 C[2],
0.*10^-47 C[1] + 0.*10^-48 C[2]}}
This is a generalization of example 1.1 in page 3 in https://arxiv.org/abs/1606.01576 .