I found the least squares solution for the following inconsistent system of equations:
$ x_1 - x_2 = 0$
$ x_1 + x_2 = 5 $
$-x_1 + x_2 = 2$ , which turned out to be $ \begin{bmatrix} 2\\ 3\\ \end{bmatrix} $.
The next part of this question asks me to use this result to find the orthogonal projection of the vector $ \begin{bmatrix} 0\\ 5\\ 2\\ \end{bmatrix} $ on the span of the vectors $ \begin{bmatrix} 1\\ 1\\ -1\\ \end{bmatrix} $ and $ \begin{bmatrix} -1\\ 1\\ 1\\ \end{bmatrix} $.
To do this, is it simply the following calculation?
$ \begin{bmatrix} 1&-1\\ 1&1\\ -1&1\\ \end{bmatrix} $ $ \begin{bmatrix} 3\\ 2\\ \end{bmatrix} $? When I do this, I get $ \begin{bmatrix} 1\\ 5\\ -1\\ \end{bmatrix} $. Is this the correct answer?