Given an open interval $I\subset\mathbb{R}$, $ i_0\in I$, and $f:I\times\mathbb{R} \rightarrow\mathbb{R}$ such that
For all $i\in\mathbb{R}:y\mapsto f(i,y)$ is integrable
For all $y \in \mathbb{R}$ the partial derivative $\frac{\partial f}{\partial i}(i_0,y)$ exists and
T.e. a neighbourhood $V$ of $i_0$ and an integrable function $h:\mathbb{R}\rightarrow\mathbb{R}$ s.t. for all $i \in V\cap I, i\neq i_0$ and for all $y\in\mathbb{R}$ we have $\frac{f(i,y)-f(i_0,y)}{i-i_0}\le h(y)$
I want to prove that $$F:I\rightarrow\mathbb{R}, i\mapsto\int_{\mathbb{R}}f(i,y)dy$$ is differentiable at $i_0$ and that $$F'(i_0)=\int_{\mathbb{R}}\frac{\partial f}{\partial i}(i_0,y)dy$$
I know that for $F$ to be differentiable I have to prove that $$\lim_{i\rightarrow i_0}\frac{F(i)-F(i_0)}{i-i_0}$$ exists. If this turns out to be the expression from above, I'm done I think. So at the outset I have $$\frac{F(i)-F(i_0)}{i-i_0}=\frac{\int_{\mathbb{R}}f(i,y)dy-\int_{\mathbb{R}}f(i_0,y)dy}{i-i_0}=\frac{\int_{\mathbb{R}}(f(i,y)-f(i_0,y))dy}{i-i_0}$$
What do I do next?
$$\frac{F(i+h) - F(i)}{h} = \int_{X} \frac{f(y, i+h) - f(y, h)}{h} dy$$
converge as $h \to 0$, which means you need to be able to pass to the limit inside the integral. Do you know how you can show that?
– Matthew Cassell Apr 12 '16 at 14:40