Why is the derivative of $F(x)=\int_{-\infty}^{\infty}e^{ixt}dt$ (with respect to $x$) equal to $i\int_{-\infty}^{\infty} te^{itx}dt$?
If I ignore the integral sign, I see that $\frac{d}{dx}e^{itx}=e^{itx}it$ by the chain rule, but I don't see why I am allowed to disregard the integral sign. I don't think the fundamental theorem of calculus applies since due to the limits of integration not being functions of $x$.
Edited What conditions have to be checked in order to differentiate this type of function (with imaginary number in integrand) under the integral sign?