This is the expected number of fixed points in a random permutation which has combinatorial class in the notation from Analytic Combinatorics
$$\def\textsc#1{\dosc#1\csod}
\def\dosc#1#2\csod{{\rm #1{\small #2}}}\textsc{SET}(\mathcal{U}\times\textsc{CYC}_{=1}(\mathcal{Z})
+ \textsc{CYC}_{=2}(\mathcal{Z})
+ \textsc{CYC}_{=3}(\mathcal{Z})
+ \textsc{CYC}_{=4}(\mathcal{Z})
+\cdots).$$
This gives the generating function
$$G(z,u)
= \exp\left(uz +\frac{z^2}{2}+\frac{z^3}{3}+\frac{z^4}{4}+\cdots\right)$$
which is
$$G(z, u)
= \exp\left((u-1)z + z + \frac{z^2}{2}+\frac{z^3}{3}+\frac{z^4}{4}+\cdots\right)
= \frac{1}{1-z} \exp((u-1)z)
\\ = \frac{\exp(-z)}{1-z} \exp(uz).$$
To get the expected value compute
$$\left.\frac{\partial}{\partial u} G(z,u)\right|_{u=1}
= \left. \frac{\exp(-z)}{1-z} \exp(uz) \times z\right|_{u=1}
= \frac{z}{1-z}.$$
Extracting coefficients for the expected value we obtain
$$[z^n]\frac{z}{1-z} = 1$$
as claimed.