Presburger arithmetic is the first-order theory of the natural numbers with addition.
Presburger arithmetic is the first-order theory of the natural numbers with addition, named in honor of Mojżesz Presburger, who introduced it in 1929. The signature of Presburger arithmetic contains only the addition operation and equality, omitting the multiplication operation entirely. The axioms include a schema of induction.
Presburger arithmetic is much weaker than Peano arithmetic, which includes both addition and multiplication operations. Unlike Peano arithmetic, Presburger arithmetic is a decidable theory. This means it is possible to algorithmically determine, for any sentence in the language of Presburger arithmetic, whether that sentence is provable from the axioms of Presburger arithmetic. The asymptotic running-time computational complexity of this decision problem is at least doubly exponential, however.
Presburger arithmetic cannot formalize concepts such as divisibility or primality. Generally, any number concept leading to multiplication cannot be defined in Presburger arithmetic, since that leads to incompleteness and undecidability. However, it can formulate individual instances of divisibility; for example, it proves "$\forall x \exists y \big( (y + y = x) \lor (y + y + 1 = x) \big) $". This states that every number is either even or odd.