Isometric Equality
Given a Hilbert space $\mathcal{H}$.
Consider a closed operator: $$A:\mathcal{D}(A)\to\mathcal{H}:\quad A=A^{**}$$
Denote for shorthand: $$H:=A^*A:\quad H=H^*$$
Regard elements: $$\varphi\in\mathcal{D}(H)\subseteq\mathcal{D}(A)\cap\mathcal{D}(\sqrt{H})$$
A calculation gives: $$\|\sqrt{H}\varphi\|^2=\langle\sqrt{H}\varphi,\sqrt{H}\varphi\rangle=\langle H\varphi,\varphi\rangle=\langle A\varphi,A\varphi\rangle=\|A\varphi\|^2$$
But for both it is a core: $$\overline{A_{\mathcal{D}(H)}}=A\quad\overline{\sqrt{H}_{\mathcal{D}(H)}}=\sqrt{H}$$
How can I prove the latter?
Partial Isometry
By the check above: $$\varphi\in\mathcal{D}(A)=\mathcal{D}(|A|):\quad\||A|\varphi\|=\|A\varphi\|\quad$$
Construct the isometry: $$U_0:\mathcal{R}(|A|)\to\mathcal{R}(A):\quad U_0(|A|\varphi):=A\varphi$$
Extend this uniformly: $$U_E:\overline{\mathcal{R}(|A|)}\to\overline{\mathcal{R}(A)}:\quad U_E(\varphi):=\lim_nU_0(\varphi_n)$$
Lift to partial isometry: $$U:\overline{\mathcal{R}(|A|)}\oplus\mathcal{R}(|A|)^\perp\to\mathcal{H}:\quad U(\varphi+\varphi^\perp):=U_E(\varphi)$$
The polar decomposition.