Problem
Given Hilbert spaces $\mathcal{H}$ and $\mathcal{K}$.
Consider a closed operator: $$A:\mathcal{D}(A)\subseteq\mathcal{H}\to\mathcal{K}:\quad A=A^{**}$$
Polar decompose: $$A=J|A|:\quad J^*J=1_{\overline{\mathcal{R}|A|}}$$
Note that one has: $$\overline{\mathcal{R}|A|}=\overline{\mathcal{R}A^*}\quad\overline{\mathcal{R}|A^*|}=\overline{\mathcal{R}A}$$
Then identity holds: $$|A^*|:=\sqrt{AA^*}=J|A|J^*$$
Especially that gives: $$A^*=|A|J^*=J^*|A^*|$$
How can I prove this?
References
For construction see Square Root
For the relation see: Ranges