2

Hi I would like to proof without using induction that: $$ \left\lceil\frac{n}{m}\right\rceil \leq \frac{n+m-1}{m} $$

I tried:

$$ \left\lceil\frac{n}{m}\right\rceil \leq \frac{n}{m}+\frac{m}{m}-\frac{1}{m} $$

But dont see any pattern.

does any one have hints?

THX

Mamba
  • 803

3 Answers3

3

$$\left\lceil\frac{n}{m}\right\rceil < \frac{n}{m} + 1$$ $$m\left\lceil\frac{n}{m}\right\rceil < n + m$$ $$m\left\lceil\frac{n}{m}\right\rceil \leq n + m - 1$$ $$\left\lceil\frac{n}{m}\right\rceil \leq \frac{n + m - 1}{m}$$

filipos
  • 1,572
1

Note that $$\left\lceil\frac n m\right\rceil<\frac nm+1=\frac{n+m}m.$$ The inequality is sharp and the smallest difference can be $\frac1m$ because only fractions with denominator $m$ can be on the right side. Therefore $$\left\lceil\frac n m\right\rceil\le\frac{n+m}m-\frac1m=\frac{n+m-1}m.$$

user2345215
  • 16,803
0

Write $n=km+r, 0 \le r \lt m$ using the usual division with remainder.

Ross Millikan
  • 383,099