Generalizing Studentmath’s result to $n$ boys and $n$ girls, we have the probability of at least one match being
$$\begin{align*}
\sum_{k=1}^n(-1)^{k-1}\binom{n}k\frac{n!}{n^{2k}(n-k)!}&=\sum_{k=1}^n(-1)^{k-1}\binom{n}k^2\frac{k!}{n^{2k}}\\
&=\sum_{k=1}^n\frac{(-1)^{k-1}}{k!}\prod_{i=0}^{k-1}\left(\frac{n-i}n\right)^2\;;
\end{align*}$$
call this $p_n$. Note that the first few terms are
$$1-\frac{(n-1)^2}{2!n^2}+\frac{(n-1)^2(n-2)^2}{3!n^4}-\frac{(n-1)^2(n-2)^2(n-3)^2}{4!n^6}\;,$$
or approximately
$$1-\frac1{2!}+\frac1{3!}-\frac1{4!}$$
when $n$ is large. Fix a positive integer $m$. Plainly $$\prod_{i=0}^{k-1}\left(\frac{n-i}n\right)^2$$ decreases as $k$ increases from $1$ to $n$, so
$$\left|\sum_{k=m+1}^n(-1)^{k-1}\binom{n}k^2\frac{k!}{n^{2k}}\right|\le\frac1{(m+1)!}\prod_{i=0}^m\left(\frac{n-i}n\right)^2<\frac1{(m+1)!}\;.$$
By taking $n$ large enough, we can make the approximation
$$\sum_{k=1}^m(-1)^{k-1}\binom{n}k^2\frac{k!}{n^{2k}}\approx\sum_{k=1}^m\frac{(-1)^{k-1}}{k!}$$
as close as we like and hence get
$$\left|p_n-\sum_{k=1}^m\frac{(-1)^{k-1}}{k!}\right|<\frac1{(m+1)!}\;.$$
Finally, $$\sum_{k\ge 1}\frac{(-1)^{k-1}}{k!}=1-\frac1e\;,$$
so $p_n\to1-\dfrac1e$ as $n\to\infty$, and the probability of getting no match approaches $\dfrac1e$.