Suppose $\sum_{n=1}^\infty \frac{1}{a_n} = A$ is summable, with $a_n > 0,$ $n = 1,2,3,\cdots.$ How can we prove that $\sum_{n=1}^\infty \frac{n}{a_1 + \dots + a_n}$ is also summable?
This question came from a problem-solving seminar, but I'm quite stuck without a push in the right direction. I tried a few things, including Cauchy-Schwarz (which says $\sum_{n=1}^\infty \frac{n}{a_1 + \dots + a_n} < \sum_{n=1}^\infty \frac{A}{n}$) and also the idea of assuming the latter series diverges and attempting to deduce the divergence of the former series from that, using facts such as $\sum a_n = \infty \implies \sum \frac{a_n}{a_1 + \cdots + a_n} = \infty$. Nothing has worked so far.