4

$a_n > 0$ and $\sum_\limits{n=1}^{+\infty} \frac{1}{a_n}$ converges. Prove $\sum_\limits{n=1}^{+\infty} \frac{n}{a_1 + \cdots + a_n}$ is convergent.

I find that this may have something to do with Stolz Theorem which says that if $\{\frac{1}{a_n}\}$ is convergent then $$\lim_{n \rightarrow +\infty} \frac{n}{a_1+\cdots +a_n} = \lim_{n \rightarrow +\infty} \frac{1}{a_n}$$ This may implies that $\frac{n}{a_1+\cdots +a_n}$ and $\frac{1}{a_n}$ have the same declining speed so leads to the answer of the question.

However, I don't know how to turn this into correct proof.

XT Chen
  • 1,584
  • 1
    Saying that $\lim_{n \to \infty} \frac{n}{a_1+\cdots+a_n}=\lim_{n\to \infty} \frac{1}{a_n}$ does not imply they have "the same declining speed." E.g., $\lim_{n\to \infty} \frac{1}{n^2}=\lim_{n\to \infty} \frac{1}{n}=0$ but one of these sequences is summable and the other is not. – kccu Mar 29 '19 at 14:54
  • See this posting and the links: https://math.stackexchange.com/questions/2952345/prove-a-strong-inequality-sum-k-1n-fracka-1a-2-cdotsa-k-le-left2-f – Sungjin Kim Mar 29 '19 at 15:51

1 Answers1

4

Let $b_n = \frac{1}{a_n}$, then $\frac{n}{a_1 + \cdots + a_n}$ is the harmonic mean of $b_1,..b_n$ so it is less or equal than the corresponding geometric mean.

$\sum_\limits{n=1}^{+\infty} \frac{n}{a_1 + \cdots + a_n} \leq \sum_\limits{n=1}^{+\infty} (b_1....b_n)^{\frac{1}{n}} \leq e\sum_\limits{n=1}^{+\infty} b_n=e\sum_\limits{n=1}^{+\infty} \frac{1}{a_n} < \infty$ by Carleman's Inequality

Conrad
  • 31,769