Prove that $\forall \{A_n\}_{n \in \mathbb{N}}$ $\exists k\in \mathbb{R}$ such that $\displaystyle \sum_{n=1}^{\infty}{\dfrac{n}{A_1+\cdots+A_n}}\leq k \cdot\sum_{n=1}^{\infty}{\dfrac{1}{A_n}}$
I already know that the case when $\displaystyle \sum_{n=1}^{\infty}{A_n}$ converges we gey the inequality $\infty\leq\infty$ but I don't know what to do when $\sum{A_n}$ diverges.
Edit: we are assuming that $\displaystyle \sum_{i=1}^{j}{A_i}\neq 0 \quad \forall j\in\mathbb{N}$