I use Polish/Lukasiewicz notation. I also make use of condensed detachment.
The axioms in Lukasiewicz notation get re-written as
- CpCqp. RVP
- CCpCqrCCpqCpr. SD
- CCNpNqCqp.
As the question stands right now we want to prove that CNCCpqNCqrCpr. Given the usual definition of conjunction
Definition of conjunction: C $\delta$ NCpNq $\delta$ Kpq
and substituting p with Cpq, q with Cqr, and $\delta$ with C'Cpr we obtain:
C CNCCpqNCqrCpr CKCpqCqrCpr.
Thus, we can think of the problem as asking us to try and prove that CKCpqCqrCpr. Note that K-out-left (Kol): C NCpNq p, and K-out-right (Kor): C NpNq q are both theorems of this system. Both of those are not all that hard to prove on a theorem prover like Prover9. Thus...
hypothesis 1 | NCCpqNCqr
D Kol.1 2 | Cpq
D Kor.1 3 | Cqr (note that NO substitutions happened in the hypothesis)
Then we could prove that Cpq holds underneath the hypothesis (the theorem CCqrCCpqCpr... which is the same as CCpqCCrpCrq is only three condensed detachments away from the axioms I've called "RVP" and "SD"), and then use the proof procedure outlined by the deduction meta-theorem to write an axiomatic proof (along with axiomatic proofs of Kol and Kor).
Alternatively, here's a proof that Prover9 1 gave me while I was writing up this answer:
% -------- Comments from original proof --------
% Proof 3 at 747.44 (+ 64.72) seconds.
% Length of proof is 49.
% Level of proof is 17.
% Maximum clause weight is 24.
% Given clauses 16441.
1 P(C(N(C(C(x,y),N(C(y,z)))),C(x,z))) # label(non_clause) # label(goal). [goal].
4 -P(C(x,y)) | -P(x) | P(y). [assumption].
5 P(C(x,C(y,x))). [assumption].
6 P(C(C(x,C(y,z)),C(C(x,y),C(x,z)))). [assumption].
7 P(C(C(N(x),N(y)),C(y,x))). [assumption].
8 -P(C(N(C(C(c1,c2),N(C(c2,c3)))),C(c1,c3))). [deny(1)].
11 P(C(x,C(y,C(z,y)))). [hyper(4,a,5,a,b,5,a)].
12 P(C(C(C(x,C(y,z)),C(x,y)),C(C(x,C(y,z)),C(x,z)))). [hyper(4,a,6,a,b,6,a)].
13 P(C(x,C(C(y,C(z,u)),C(C(y,z),C(y,u))))). [hyper(4,a,5,a,b,6,a)].
14 P(C(C(x,y),C(x,x))). [hyper(4,a,6,a,b,5,a)].
15 P(C(C(C(N(x),N(y)),y),C(C(N(x),N(y)),x))). [hyper(4,a,6,a,b,7,a)].
16 P(C(x,C(C(N(y),N(z)),C(z,y)))). [hyper(4,a,5,a,b,7,a)].
18 P(C(x,C(y,C(z,C(u,z))))). [hyper(4,a,5,a,b,11,a)].
21 P(C(x,x)). [hyper(4,a,14,a,b,11,a)].
22 P(C(C(C(x,y),x),C(C(x,y),y))). [hyper(4,a,6,a,b,21,a)].
28 P(C(C(x,C(C(y,x),z)),C(x,z))). [hyper(4,a,12,a,b,11,a)].
48 P(C(C(C(x,C(y,z)),C(C(C(x,y),C(x,z)),u)),C(C(x,C(y,z)),u))). [hyper(4,a,12,a,b,13,a)].
51 P(C(C(x,C(C(y,C(z,y)),u)),C(x,u))). [hyper(4,a,12,a,b,18,a)].
94 P(C(C(x,C(N(y),N(z))),C(x,C(z,y)))). [hyper(4,a,6,a,b,16,a)].
153 P(C(N(x),C(x,y))). [hyper(4,a,28,a,b,16,a)].
154 P(C(C(x,y),C(C(z,x),C(z,y)))). [hyper(4,a,28,a,b,13,a)].
159 P(C(x,C(N(y),C(y,z)))). [hyper(4,a,5,a,b,153,a)].
181 P(C(C(C(N(x),C(x,y)),z),z)). [hyper(4,a,22,a,b,159,a)].
985 P(C(C(C(x,y),z),C(y,z))). [hyper(4,a,51,a,b,154,a)].
1267 P(C(x,C(C(C(y,z),u),C(z,u)))). [hyper(4,a,5,a,b,985,a)].
1270 P(C(C(C(C(x,y),C(x,z)),u),C(C(x,C(y,z)),u))). [hyper(4,a,985,a,b,48,a)].
1274 P(C(x,C(C(x,y),y))). [hyper(4,a,985,a,b,22,a)].
1275 P(C(x,C(C(N(y),N(x)),y))). [hyper(4,a,985,a,b,15,a)].
1281 P(C(C(x,y),C(x,C(C(y,z),z)))). [hyper(4,a,154,a,b,1274,a)].
1565 P(C(C(x,C(N(y),N(x))),C(x,y))). [hyper(4,a,6,a,b,1275,a)].
3546 P(C(C(x,C(y,z)),C(y,C(x,z)))). [hyper(4,a,48,a,b,1267,a)].
5191 P(C(N(N(x)),x)). [hyper(4,a,181,a,b,1565,a)].
5220 P(C(N(N(x)),C(C(x,y),y))). [hyper(4,a,1281,a,b,5191,a)].
5255 P(C(x,N(N(x)))). [hyper(4,a,7,a,b,5191,a)].
5330 P(C(C(x,y),C(x,N(N(y))))). [hyper(4,a,154,a,b,5255,a)].
20433 P(C(x,C(C(x,y),N(N(y))))). [hyper(4,a,3546,a,b,5330,a)].
20439 P(C(C(x,y),C(N(N(x)),y))). [hyper(4,a,3546,a,b,5220,a)].
20465 P(C(C(x,y),C(C(y,z),C(x,z)))). [hyper(4,a,3546,a,b,154,a)].
20936 P(C(x,C(C(C(y,x),z),N(N(z))))). [hyper(4,a,985,a,b,20433,a)].
21232 P(C(N(N(x)),C(C(x,y),N(N(y))))). [hyper(4,a,20439,a,b,20433,a)].
26696 P(C(C(C(x,y),z),C(y,N(N(z))))). [hyper(4,a,3546,a,b,20936,a)].
26831 P(C(C(x,y),C(N(N(x)),N(N(y))))). [hyper(4,a,3546,a,b,21232,a)].
28197 P(C(C(C(x,N(y)),z),C(N(z),y))). [hyper(4,a,94,a,b,26696,a)].
28252 P(C(C(x,y),C(N(y),N(x)))). [hyper(4,a,94,a,b,26831,a)].
28286 P(C(C(x,C(y,z)),C(x,C(N(z),N(y))))). [hyper(4,a,154,a,b,28252,a)].
30222 P(C(C(x,C(N(y),z)),C(N(C(x,z)),y))). [hyper(4,a,1270,a,b,28197,a)].
36736 P(C(C(x,y),C(N(C(x,z)),N(C(y,z))))). [hyper(4,a,28286,a,b,20465,a)].
39880 P(C(N(C(C(x,y),N(C(y,z)))),C(x,z))). [hyper(4,a,30222,a,b,36736,a)].
39881 $F. [resolve(39880,a,8,a)].
In an infix notation...
% -------- Comments from original proof --------
% Proof 1 at 0.03 (+ 0.00) seconds.
% Length of proof is 49.
% Level of proof is 17.
% Maximum clause weight is 24.
% Given clauses 46.
1 P(-((x -> y) -> -(y -> z)) -> (x -> z)) # label(non_clause) # label(goal). [goal].
2 -P(x -> y) | -P(x) | P(y). [assumption].
3 P(x -> (y -> x)). [assumption].
4 P((x -> (y -> z)) -> ((x -> y) -> (x -> z))). [assumption].
5 P((-x -> -y) -> (y -> x)). [assumption].
6 -P(-((c4 -> c5) -> -(c5 -> c6)) -> (c4 -> c6)). [deny(1)].
7 P(x -> (y -> (z -> y))). [hyper(2,a,3,a,b,3,a)].
8 P(((x -> (y -> z)) -> (x -> y)) -> ((x -> (y -> z)) -> (x -> z))).
[hyper(2,a,4,a,b,4,a)].
9 P(x -> ((y -> (z -> u)) -> ((y -> z) -> (y -> u)))). [hyper(2,a,3,a,b,4,a)].
10 P((x -> y) -> (x -> x)). [hyper(2,a,4,a,b,3,a)].
11 P(((-x -> -y) -> y) -> ((-x -> -y) -> x)). [hyper(2,a,4,a,b,5,a)].
12 P(x -> ((-y -> -z) -> (z -> y))). [hyper(2,a,3,a,b,5,a)].
14 P(x -> (y -> (z -> (u -> z)))). [hyper(2,a,3,a,b,7,a)].
17 P(x -> x). [hyper(2,a,10,a,b,7,a)].
18 P(((x -> y) -> x) -> ((x -> y) -> y)). [hyper(2,a,4,a,b,17,a)].
21 P((x -> (-y -> -z)) -> (x -> (z -> y))). [hyper(2,a,4,a,b,12,a)].
31 P(-x -> (x -> y)). [hyper(2,a,21,a,b,3,a)].
34 P(x -> (-y -> (y -> z))). [hyper(2,a,3,a,b,31,a)].
35 P(((-x -> (x -> y)) -> z) -> z). [hyper(2,a,18,a,b,34,a)].
54 P((x -> ((y -> (z -> y)) -> u)) -> (x -> u)). [hyper(2,a,8,a,b,14,a)].
57 P(((x -> (y -> z)) -> (((x -> y) -> (x -> z)) -> u)) -> ((x -> (y -> z)) -> u)).
[hyper(2,a,8,a,b,9,a)].
58 P((x -> ((y -> x) -> z)) -> (x -> z)). [hyper(2,a,8,a,b,7,a)].
62 P((x -> y) -> ((z -> x) -> (z -> y))). [hyper(2,a,58,a,b,9,a)].
79 P(((x -> y) -> z) -> (y -> z)). [hyper(2,a,54,a,b,62,a)].
88 P(x -> (((y -> z) -> u) -> (z -> u))). [hyper(2,a,3,a,b,79,a)].
91 P(x -> ((x -> y) -> y)). [hyper(2,a,79,a,b,18,a)].
92 P(x -> ((-y -> -x) -> y)). [hyper(2,a,79,a,b,11,a)].
96 P((x -> y) -> (x -> ((y -> z) -> z))). [hyper(2,a,62,a,b,91,a)].
117 P((x -> (-y -> -x)) -> (x -> y)). [hyper(2,a,4,a,b,92,a)].
172 P(--x -> x). [hyper(2,a,35,a,b,117,a)].
176 P(--x -> ((x -> y) -> y)). [hyper(2,a,96,a,b,172,a)].
182 P(x -> --x). [hyper(2,a,5,a,b,172,a)].
190 P((x -> y) -> (x -> --y)). [hyper(2,a,62,a,b,182,a)].
264 P((((x -> y) -> (x -> z)) -> u) -> ((x -> (y -> z)) -> u)). [hyper(2,a,79,a,b,57,a)].
269 P((x -> (y -> z)) -> (y -> (x -> z))). [hyper(2,a,57,a,b,88,a)].
282 P(x -> ((x -> y) -> --y)). [hyper(2,a,269,a,b,190,a)].
283 P((x -> y) -> (--x -> y)). [hyper(2,a,269,a,b,176,a)].
288 P((x -> y) -> ((y -> z) -> (x -> z))). [hyper(2,a,269,a,b,62,a)].
304 P(x -> (((y -> x) -> z) -> --z)). [hyper(2,a,79,a,b,282,a)].
348 P(--x -> ((x -> y) -> --y)). [hyper(2,a,283,a,b,282,a)].
410 P(((x -> y) -> z) -> (y -> --z)). [hyper(2,a,269,a,b,304,a)].
452 P((x -> y) -> (--x -> --y)). [hyper(2,a,269,a,b,348,a)].
473 P(((x -> -y) -> z) -> (-z -> y)). [hyper(2,a,21,a,b,410,a)].
499 P((x -> y) -> (-y -> -x)). [hyper(2,a,21,a,b,452,a)].
538 P((x -> (y -> z)) -> (x -> (-z -> -y))). [hyper(2,a,62,a,b,499,a)].
636 P((x -> y) -> (-(x -> z) -> -(y -> z))). [hyper(2,a,538,a,b,288,a)].
738 P((x -> (-y -> z)) -> (-(x -> z) -> y)). [hyper(2,a,264,a,b,473,a)].
776 P(-((x -> y) -> -(y -> z)) -> (x -> z)). [hyper(2,a,738,a,b,636,a)].
777 $F. [resolve(776,a,6,a)].
1 W. McCune, "Prover9 and Mace4", http://www.cs.unm.edu/~mccune/Prover9, 2005-2014.