Your axiom system is that of Elliott Mendelson, Introduction to Mathematical Logic (4th ed - 1997). page 35.
With axioms (A1) and (A2) - as said by Doug - you may prove Deduction Theorem [see Mendelson, page 37 for a proof].
We need an "intermediate result" (we call it Syll) :
$\mathcal A \rightarrow \mathcal B, \mathcal B \rightarrow \mathcal C \vdash \mathcal A \rightarrow \mathcal C$ --- [Corollary 1.10a, page 38]
We prove it with DT :
(1) --- $\mathcal A \rightarrow \mathcal B$ --- assumption
(2) --- $\mathcal B \rightarrow \mathcal C$ --- assumption
(3) --- $\mathcal A$ --- assumption
(4) --- $\mathcal B$ --- from (3) and (1) by modus ponens
(5) --- $\mathcal C$ --- from (4) and (2) by modus ponens
thus : $\mathcal A \rightarrow \mathcal B, \mathcal B \rightarrow \mathcal C, \mathcal A \vdash \mathcal C$;
so : $\mathcal A \rightarrow \mathcal B, \mathcal B \rightarrow \mathcal C, \vdash \mathcal A \rightarrow \mathcal C$ --- by Deduction Theorem.
Now with the main proof :
(1) $p \rightarrow q$ --- assumption
(2) $\vdash (p \rightarrow q) \rightarrow ((p \rightarrow \lnot q) \rightarrow \lnot p)$ --- (A3)
(3) $\vdash \lnot q \rightarrow (p \rightarrow \lnot q)$ --- (A1)
(4) $(p \rightarrow \lnot q) \rightarrow \lnot p$ --- from (1) and (2) by modus ponens
(5) $\lnot q \rightarrow \lnot p$ --- form (3) and (4) by Syll.
Thus : $p \rightarrow q \vdash \lnot q \rightarrow \lnot p$.
Appendix
If you cannot use the resource of Deduction Theorem, you must prove :
$\vdash (p \rightarrow q) \rightarrow ((q \rightarrow r) \rightarrow (p \rightarrow r))$
and use it in step (5) of the above proof.
How to prove this [see Mendelson, page 37] ?
We may "mimick" the proof of the DT to find the proof of the above formula.
(Step 1)
(1) --- $\mathcal A \rightarrow \mathcal B$ --- assumption
(2) --- $\mathcal B \rightarrow \mathcal C$ --- assumption
(3) --- $\vdash (\mathcal B \rightarrow \mathcal C) \rightarrow (\mathcal A \rightarrow (\mathcal B \rightarrow \mathcal C))$ --- (A1)
(4) --- $\mathcal A \rightarrow (\mathcal B \rightarrow \mathcal C)$ --- from (2) and (3) by modus ponens
(5) --- $\vdash (\mathcal A \rightarrow \mathcal B) \rightarrow ((\mathcal A \rightarrow (\mathcal B \rightarrow C)) \rightarrow (\mathcal A \rightarrow \mathcal C))$ --- (A2)
(6) --- $(\mathcal A \rightarrow (\mathcal B \rightarrow C)) \rightarrow (\mathcal A \rightarrow \mathcal C)$ --- from (1) and (5) by modus ponens
(7) --- $\mathcal A \rightarrow \mathcal C$ --- from (4) and (6) by modus ponens.
Thus : $\mathcal A \rightarrow \mathcal B, \mathcal B \rightarrow \mathcal C \vdash \mathcal A \rightarrow \mathcal C$.
What have we obtained so far ? A proof of $\mathcal A \rightarrow \mathcal C$ from $\mathcal A \rightarrow \mathcal B$ and $\mathcal B \rightarrow \mathcal C$ without the use of the Deduction Theorem (using only (A1), (A2)).
Now we can repeat the procedure to get :
(Step 2)
(a) --- $\mathcal A \rightarrow \mathcal B$ --- assumption
(b) --- $\vdash (\mathcal A \rightarrow \mathcal B) \rightarrow [(\mathcal A \rightarrow (\mathcal B \rightarrow \mathcal C)) \rightarrow (\mathcal A \rightarrow \mathcal C)]$ --- (A2)
(c) --- $(\mathcal A \rightarrow (\mathcal B \rightarrow \mathcal C)) \rightarrow (\mathcal A \rightarrow \mathcal C)]$ --- from (a) and (b) by modus ponens [call this formula $\mathsf F$]
(d) --- $\vdash \mathsf F \rightarrow [(\mathcal B \rightarrow \mathcal C) \rightarrow \mathsf F]$ --- (A1)
(e) --- $(\mathcal B \rightarrow \mathcal C) \rightarrow \mathsf F$ --- from (c) and (d) by modus ponens
(f) --- $\vdash (\mathcal B \rightarrow \mathcal C) \rightarrow (\mathcal A \rightarrow (\mathcal B \rightarrow \mathcal C))$ --- (A1)
(g) --- $(\mathcal B \rightarrow \mathcal C) \rightarrow (\mathcal A \rightarrow \mathcal C)$ --- from (A2) with (f) and (e).
Thus : $\mathcal A \rightarrow \mathcal B \vdash (\mathcal B \rightarrow \mathcal C) \rightarrow (\mathcal A \rightarrow \mathcal C)$.
Finally, we repeat the above "procedure" to get :
(Step 3)
$\vdash \mathcal A \rightarrow \mathcal B \rightarrow ((\mathcal B \rightarrow \mathcal C) \rightarrow (\mathcal A \rightarrow \mathcal C))$.