"Experimentally", I found that the kernel (null space) of the following matrix is of dimension 2. I'd like to prove it, but haven't managed yet: \begin{equation} \text{for almost all } t>0,\quad \text{dim}\,\text{ker}\left(\mathbf{Q}_2\mathbf{Q}_1(t)-\mathbf{Q}_1(t)^{-1}\mathbf{Q}_2\right)\overbrace{=}^?\;2 \end{equation}
where:
$\mathbf{Q}_2$ is the identity matrix everywhere except in $(2n,2n)$: \begin{equation} \mathbf{Q}_2=\begin{bmatrix} 1 & & \\ & \ddots & \\ & & 1 & \\ & & & -1 \end{bmatrix}\in\mathbb{R}^{2n\times2n} \end{equation}
$\mathbf{Q}_1(t)$ is defined by:
\begin{equation} \forall t>0,\quad\mathbf{Q}_1(t)=\begin{bmatrix}\textbf{cos}(\boldsymbol \Omega t) & \boldsymbol \Omega^{-1}\,\textbf{sin}(\boldsymbol \Omega t) \\ -\boldsymbol \Omega\,\textbf{sin}(\boldsymbol \Omega t) & \textbf{cos}(\boldsymbol \Omega t)\end{bmatrix}\in\mathbb{R}^{2n\times2n} \end{equation} where (... sorry...): \begin{equation} \boldsymbol\Omega=\begin{bmatrix} \omega_1 & & \\ & \ddots & \\ & & \omega_n \end{bmatrix}\in\mathbb{R}^{n\times n},\quad \forall i\in\lbrace 1,\dots, n\rbrace, \omega_i>0 \end{equation}
and the four blocks are diagonal, for example: \begin{equation} \mathbf{cos}(\boldsymbol\Omega t)=\begin{bmatrix} \cos(\omega_1t) & & \\ & \ddots & \\ & & \cos(\omega_n t) \end{bmatrix}\in\mathbb{R}^{n\times n} \end{equation}
Interesting properties of $\mathbf{Q}_1$ and $\mathbf{Q}_2$:
Obviously, $\mathbf{Q}_2$ is invertible and $\mathbf{Q}_2=\mathbf{Q}_2^{-1}$.
Also, $\det(\mathbf{Q}_1)=1$ ($\omega_i>0$ and for proper $t>0$) and: \begin{equation} \mathbf{Q}_1(t)^{-1}=\begin{bmatrix}\textbf{cos}(\boldsymbol \Omega t) & -\boldsymbol \Omega^{-1}\,\textbf{sin}(\boldsymbol \Omega t) \\ \boldsymbol \Omega\,\textbf{sin}(\boldsymbol \Omega t) & \textbf{cos}(\boldsymbol \Omega t)\end{bmatrix} \end{equation}
The initial equation can therefore also be written as: \begin{equation} \text{ker}\left(\mathbf{Q}_2\mathbf{Q}_1(t)-\mathbf{Q}_1(t)^{-1}\mathbf{Q}_2\right)=\text{ker}\left(\mathbf{Q}_2\mathbf{Q}_1(t)\mathbf{Q}_2\mathbf{Q}_1(t)-\mathbf{1}_{2n}\right) \end{equation}
So another way of solving the problem is to prove that 1 is an eigenvalue of $\mathbf{Q}_2\mathbf{Q}_1(t)\mathbf{Q}_2\mathbf{Q}_1(t)$ with a multiplicity of 2. But I'm not sure this helps...
Any clues would be greatly appreciated.