You could use generating functions to solve the recurrence relation. We use GFs as formal power series i.e. purely algebraically without considering convergence or limits. A formidable starter for these techniques is H.Wilf's Generatingfunctionology.
Recurrence relation:
\begin{align*}
f(n)&=2f(n-1)+n-1\qquad\qquad n\geq 1\\
f(0)&=0
\end{align*}
Let's consider the generating function
\begin{align*}
F(z)=\sum_{n=0}^{\infty}f(n)z^n
\end{align*}
and use the Ansatz:
\begin{align*}
\sum_{n=1}^{\infty}f(n)z^n&=\sum_{n=1}^{\infty}\left(2f(n-1)+n-1\right)z^n\tag{1}\\
&=2\sum_{n=1}^{\infty}f(n-1)z^n+\sum_{n=1}^{\infty}(n-1)z^n\\
&=2\sum_{n=0}^{\infty}f(n)z^{n+1}+\sum_{n=0}^{\infty}nz^{n+1}\tag{2}\\
&=2zF(z)+z^2\sum_{n=0}^{\infty}nz^{n-1}\tag{3}\\
&=2zF(z)+z^2D\left(\frac{1}{1-z}\right)\tag{4}\\
&=2zF(z)+\frac{z^2}{(1-z)^2}
\end{align*}
Comment:
In (2) we made an index shift $n\rightarrow n-1$
In (3) you may observe that the right sum is the derivative of the geometrical series $\frac{1}{1-z}$
In (4) we apply the formal differential operator $D$
Since the left hand side of (1) is
\begin{align*}
\sum_{n=1}^{\infty}f(n)z^n=F(z)-f(0)=F(z)
\end{align*}
it follows, that the recurrence relation translated in the language of generating functions gives
\begin{align*}
F(z)=2zF(z)+\frac{z^2}{(1-z)^2}
\end{align*}
Now we calculate $F(z)$ and find a series representation.
\begin{align*}
F(z)&=\frac{z^2}{(1-z)^2(1-2z)}\tag{5}\\
&=\frac{1}{1-2z}-\frac{1}{(1-z)^2}\\
&=\sum_{n=0}^{\infty}(2z)^n-\sum_{n=0}^{\infty}\binom{-2}{n}(-z)^n\\
&=\sum_{n=0}^{\infty}2^nz^n-\sum_{n=0}^{\infty}\binom{n+1}{n}z^n\tag{6}
\end{align*}
Observe, that we applied partial fraction decomposition in (5).
Now it's time to harvest: Extracting the coefficient $[z^n]F(z)=f(n)$ from the series representation of (6) gives us
\begin{align*}
[z^n]F(z)=f(n)=2^n-n-1
\end{align*}