I have read a conclusion in a textbook:
Suppose $f_n,f$ are density functions of some r.v. also $f_n\to f$ a.e., then $$\int f_n \mathrm{d}x \to\int f \mathrm{d}x $$
Fisrt I want to use "DCT".since$$\int |f_n -f |\mathrm{d}x\ \leq2$$ even though I can't find a dominated function.
But I soon found the "DCT" is false. A counterexample is $$n\chi_{\{0\leq x\leq \frac{1}{n}\}}$$
Now the question is how to construct the dominated function or avoid using the DCT?