Let F be a distribution function. On $(\Omega, \mathfrak{F}, P)=((0,1), \mathfrak{B}(0,1),\lambda)$ where $\lambda$ denotes Lebesgue measure.
Define $X: \Omega \to \mathbb{R}$ by $X(\omega) = \sup\{y \in \mathbb{R}: F(y) < \omega\}$.
1 Show that $\forall x \in \mathbb{R}, (\omega: X(\omega) \leq x) = (\omega: \omega \leq F(x))$
2 Show that X is a RV in $(\Omega, \mathfrak{F}, P)$ and that $F_X = F$.
1 LHS = $(\omega: X(\omega) \leq x)$
= $(\omega: X(\omega) \in (-\infty, x])$
= $(\omega: \sup(y \in \mathbb{R}: F(y) < \omega) \in (\infty, x])$
RHS = $(\omega: \omega \leq F(x))$
= $(\omega: \omega \in (-\infty, F(x)])$
= $(\omega: \omega \in (-\infty, P(X^{-1}( \ (-\infty,x] \ ))))$
= $(\omega: \omega \in (-\infty, P(LHS)))$
I'm stuck. Help please? :(
Cross posted : https://stats.stackexchange.com/questions/110704/let-f-be-a-distribution-function-prove-that-x-is-a-rv