For $\alpha>0^{[1]}$, let $D^\alpha=(-\Delta)^{\frac{\alpha}{2}}$ be the operator defined on all Schwartz class functions $f$ as follows: $$ \widehat{D^\alpha f}(\xi)=\lvert \xi\rvert^\alpha \hat{f}(\xi), $$ the hat denoting Fourier transform. We have the following Sobolev inequality: $$\tag{Sob}\| f\|_{L^p(\mathbb{R}^n)}\le C \| D^\alpha f\|_{L^{q}(\mathbb{R}^n)},\qquad \frac{n}{p}=\frac{n}{q}-\alpha.$$ Now let $$\dot{W}^{\alpha, q}(\mathbb{R}^n)$$ denote the completion of the Schwartz class with respect to the norm $$\| f\|_{\dot{W}^{\alpha, q}(\mathbb{R}^n)}=\| D^\alpha f \|_{L^q(\mathbb{R}^n)}.$$
My question is: is it true that $$\dot{W}^{\alpha, q}(\mathbb{R}^n)=\left\{f\in L^p(\mathbb{R}^n)\ :\ \frac{n}{p}=\frac{n}{q}-\alpha\ \text{and}\ \| D^\alpha f \|_{L^q(\mathbb{R}^n)}<\infty \right\}?$$ Here $D^\alpha$ is taken in the tempered distributional sense.
$^{[1]}$ Let us not consider the case $\alpha <0$ for simplicity.