
For part a) I get $\frac{d}{dx}\Big[ \frac{1}{x}\frac{dy}{dx}\Big] - \frac{3g}{x^3}=\frac{f(x)}{x}$
for part b) the two solutions are $1/x$ and $x^3$.
part c) is not hard to prove and I will not do so here
for part d) I get stuck.
I get that $Lg=\delta(x-\xi)$ and $g(1,\xi)=g(2,\xi)=0$
$\implies g(x,\xi) = \left\{ \begin{array}{ll} \frac{A}{x}+Bx^3 & \mbox{if } 1<x<\xi \\ \frac{c}{x}+Dx^3 & \mbox{if } \xi<x<2 \end{array} \right.$
plugging in the BC's I get
$\implies g(x,\xi) = \left\{ \begin{array}{ll} \frac{A}{x}-Ax^3 & \mbox{if } 1<x<\xi \\ \frac{C}{x}-\frac{Cx^3}{16} & \mbox{if } \xi<x<2 \end{array} \right.$
then using the continuity condition I get
$\frac{A}{\xi}-A{\xi}^3=\frac{C}{\xi}-\frac{C\xi^3}{16}$ which gives that
$A=\frac{C(16-\xi^4)}{16(1-\xi^4)}$
then using $\frac{1}{p(\xi)}\Big[g'(\xi^+,\xi)-g'(\xi^-,\xi)\Big]=1$ I get that
$\Big[ 3C\xi^2+\frac{16C}{\xi^2}\Big] - \Big[C \Big(\frac{\xi^4-16}{\xi^4-1} \Big)\Big(3\xi^2+\frac{1}{\xi^2}\Big)\Big]=1$
$\implies 3C\xi^2+\frac{16C}{\xi^2} - 3C\xi^2 \Big(\frac{\xi^4-16}{\xi^4-1} \Big)-C\Big(\frac{\xi^4-16}{\xi^4-1}\Big)\frac{1}{\xi^2}=1$
I would like a worked solution to part d) in this question and in return I am offering a bounty.