This is a very elementary proof of Bernoulli numbers formula (for more details see https://www.pulsus.com/scholarly-articles/a-very-elementary-proof-of-an-explicit-formula-of-bernoulli-numbers.pdf):
The explicit formula of Stirling numbers of the second kind is given by:
\begin{equation}
k!S(n,k)=\sum_{i=0}^{k}(-1)^{k-i}\binom{k}{i}i^{n}
\end{equation}
If we invert the above formula using the binomial inversion formula (see https://en.wikipedia.org/wiki/Binomial_transform), we get:
$$k^{n}=\sum_{i=0}^{k}S(n,i){(k)}_{i}$$
valid for $k\in \{0, 1, \cdots, n\}$ and $(x)_n=x(x-1)\cdots(x-n+1)$.
Now sum for $k$ in the last formula you get:
$$
\begin{split}
\sum_{k=0}^{n}k^{n} & = \sum_{k=0}^{n}\sum_{i=0}^{k}S(n,i){(k)}_{i} \\
&=\sum_{i=0}^{n}S(n,i)\sum_{k=i}^{n}{(k)}_{i} \\
&=\sum_{i=0}^{n}S(n,i)\left(\frac{{(n+1)}_{i+1}-{(i)}_{i+1}}{i+1}\right) \\
&=\sum_{i=0}^{n}S(n,i)\frac{{(n+1)}_{i+1}}{i+1}\\
&=\sum_{i=0}^{n}S(n,i)\frac{1}{i+1}\sum_{j=0}^{i}c_{j}(n+1)^{j+1} \\
&=\sum_{j=0}^{n}\left(\sum_{i=j}^{n}S(n,i)\frac{c_{j}}{i+1}\right)(n+1)^{j+1}
\end{split}
$$
Thus:
$$\sum_{k=0}^{n}k^{n}=\sum_{j=0}^{n}\left(\sum_{i=j}^{n}S(n,i)\frac{c_{j}}{i+1}\right)(n+1)^{j+1}$$
Using Faulhaber's formula for the LHS of the above formula you get:
$$\sum_{j=0}^{n}\left(\frac{\binom{n+1}{j+1}}{n+1}B_{n-j}\right)(n+1)^{j+1}=\sum_{j=0}^{n}\left(\sum_{i=j}^{n}S(n,i)\frac{c_{j}}{i+1}\right)(n+1)^{j+1}$$
The coefficients of $(n+1)$ in both representations are equal so:
$$\frac{\binom{n+1}{1}}{n+1}B_{n}=\sum_{i=0}^{n}S(n,i)\frac{c_{0}}{i+1} \implies B_{n}=\sum_{i=0}^{n}S(n,i)\frac{{(-1)}^{i}i!}{i+1}$$
Substitute $i!S(n,i)$ by the very first formula you get the famous explicit formula of Bernoulli numbers:
$$B_{n}=\sum_{i=0}^{n}\frac{1}{i+1}\sum_{j=0}^{i}\binom{i}{j}{(-1)}^{j}j^{n}$$