Let $F$ be a field and $F[t]$ be the ring of polynomials. Take $p(t)$, $q(t) \in F[t]$, and write $p(t) = \sum_{i=1}^{n} {a_i}{t^i}$, $q(t) = \sum_{k=1}^{n} {b_k}{t^k}$, where $n$ denotes the greater of the degree of $p(t), q(t)$. Then, we have:
$$p(t)q(t) = \big(\sum_{i=1}^{n} {a_i}{t^i}\big)\big(\sum_{k=1}^{n} {b_k}{t^k}\big)$$ $$ = a_0\sum_{k=1}^{n} {b_k}{t^k} + a_1\sum_{k=1}^{n} {b_k}t^{k+1} + a_2\sum_{k=1}^{n} {b_k}t^{k+2}... a_n\sum_{k=1}^{n} {b_k}t^{k+n}$$ $$ = \sum_{i=1}^{n} \sum_{k=1}^{n} {a_i}{b_k}t^{i+k}$$
If $p(t)$ is nonzero, then $a_i \neq 0$ for some $i \in \{0, 1, 2 ...n\}$. Let $M = \{i_m : a_{i_m} \neq 0\}$. So the double-sum above becomes:
$$ \sum_{i_m \in M} \sum_{k=1}^{n} {a_{i_m}}{b_k}t^{i_m+k} = \sum_{0 \le j \le 2n} \big(\sum_{i_m+k=j} {a_{i_m}}{b_k}\big)t^{j} $$
I see that the $i_m$'s are scattered, so how do I go from here to show that $\big(\sum_{i_m+k=j} {a_{i_m}}{b_k}\big) = 0 \rightarrow b_k = 0$ for all $k = 0$ to $n$?