Consider a rectangular matrix $A\in\mathbb{R}^{M\times N}$ and a diagonal matrix $D\in\mathbb{R}^{N\times N}$. What can one say on the eigenvalues and eigenvectors of $ADA^T$?
For example, if we denote $\{d_i\}_{i=1..N}$ the diagonal components of $D$ and $A=U\Sigma V^T$ is its singular values decompositions, can you express the eigenvalues and eigenvectors of $ADA^T$ in some simple way using $D,U,\Sigma,V$?
Thanks!