Let me tell you from where I got this question: It is from a paper written by Yun-Bin Zhao, Approximation Theory of Matrix Rank Minimization and Its Application to Quadratic Equations. In the published version the procedure to get the dual problem is omitted, but, by chance I found it in preprint one :
this is the procedure in detail, the only required information is that :
if we formulat the SDP in the forme :
$$
\begin{array}{rll} {\displaystyle\min_{X \in \mathbb{S}^n}} & \langle C, X \rangle_{\mathbb{S}^n} & \\ \text{subject to} & \langle A_i, X \rangle_{\mathbb{S}^n} = b_i, \quad i = 1,\ldots,m & (P) \\ & X \succeq 0 & \end{array}
$$
The dual problem is given by :
$$
\begin{array}{rll} {\displaystyle\max_{y \in \mathbb{R}^m}} & \langle b, y \rangle_{\mathbb{R}^m} & \\
& & (D) \\
\text{subject to} & {\displaystyle\sum_{i=1}^m} y_i A_i \preceq C & \end{array}
$$
where for any two matrices P and Q, $P \succeq Q$ means $P-Q \succeq 0$.
from that we can easy verify that the dual of (I will note that by $(P')$) :
\begin{equation}
\min \{\langle
C_0, W \rangle : \langle C_i, W\rangle = b_i, i=1, ..., l, ~
\delta_1\leq \langle C, W \rangle \leq \delta_2, ~ W \succeq 0, \}
\end{equation} is given by \begin{equation}
\max \left\{ b^T y + \delta_1 t_1 +\delta_2 t_2: ~
\sum_{i=1}^l y_i C_i +(t_1 +t_2) C \preceq C_0, ~t_1\geq 0, ~t_2\leq
0 \right\}, \end{equation} where $b=(b_1, ..., b_l)^T$. ( note that $b^Ty=\langle b, y \rangle_{\mathbb{R}^m}$ :) )
To obtain the dual problem of my question's problem, let us rewrite the
problem as the form of (P) . Notice that the positive semidefinite conditions (constraint) in my question problem are equivalent to :
$$ W' =\begin{pmatrix}
X & 0 & 0 & 0 & 0\\
0 & I & X & 0 & 0 \\
0 & X & Z & 0 & 0 \\
0 & 0 & 0 & Y & X \\
0 & 0 & 0 & X & Z+\varepsilon I
\end{pmatrix}
\succeq 0 . $$
Let $ E^{(k, l)} \in S^ {5n\times 5n} $ ($k,l=1,..., 5n)$ denote
the symmetric matrices with $(k, l)$th entry = $(l, k)$th entry $=
1$ and zero elsewhere. When $k=l$, $ E^{(k, k)} $ denotes the matrix
with ($k,k)$th entry 1 and all other elements 0. Clearly, we have
$E^{(l,k)}=E^{(k,l)}$ for any $(k,l).$ Note that for any matrix
$W=(w_{i,j}) \in S^{5n\times 5n},$ it can be represented as
$W=\sum_{k=1}^{5n} \sum_{l=k}^{5n} w_{k,l}E^{(k,l)},$ and $
\langle E^{(k, l)}, W \rangle = w_{k,l}+w_{l,k} = 2w_{k,l}$ for
$k\not=l,$ and $ \langle E^{(k, k)}, W \rangle = w_{k,k}. $ In
terms of $E^{(\cdot, \cdot)},$ the condition ($W' \succeq 0 $)
can be written as the
following set of constraints
$$
\begin{array}
& &W & \succeq & 0 , \\
1& \langle E^{(i, ~n+j)}, W \rangle & = & 0, ~~i = 1, ..., n, j=1,...,
4n, \\
2& \langle E^{(n+i, ~3n+j)}, W \rangle & = & 0, ~~i,j = 1, ..., 2n,
\\
3& \langle E^{(n+i, ~n+j)}, W \rangle & = & 0, ~ i=1, ..., n-1, j=i+1,...,
n,
\\
4& \langle E^{(n+i, ~n+i)}, W \rangle & = & 1, ~ i=1,..., n,
\\
5& \langle E^{(i,j)}-E^{(n+i, ~2n+j)}, W \rangle & = & 0, ~~ i=1,..., n-1, ~ j=i+1, ...,
n, \\
6& \langle E^{(j,i)}-E^{(n+j, ~2n+i)}, W \rangle & = & 0, ~i=1,...,
n-1, ~j=i+1, ..., n, \\
7& \langle 2 E^{(i,i)}-E^{(n+i, ~2n+i)}, W \rangle & = & 0, ~~ i =1, ...,
n, \\
8& \langle E^{(n+i,2n+j)}-E^{(3n+i, ~4n+j)}, W \rangle & = & 0, ~~ i,j=1, ..., n, \\
9& \langle E^{(4n+i, ~4n+j)}- E^{(2n+i, ~2n+j)} , W \rangle & = & 0, ~~i=1,..., n-1, j =i+1,..., n
, \\
10& \langle E^{(4n+i, ~4n+i)}- E^{(2n+i, ~2n+i)} , W \rangle & = & \varepsilon, ~~i=1, ..., n ,
\end{array}
$$
where (1) and (2) represent the zero blocks in the matrix $W'$, conditions (3) and (4) describe the
block $I$ (the $n\times n $ identity matrix), conditions (5) to (8)
represent the $X$ blocks, and (9) and (10) describe
the relation between the blocks $Z$ and $Z+\varepsilon I$
therein.
In terms of $W\in S^{5n\times 5n},$ the equality $\langle A_i, X\rangle =0$ in my question's problem can be written as
$\langle P_i, W\rangle =0, $ the inequality $ 1\leq
\textrm{tr}(X)\leq \sqrt{n} $ can be represented as $ 1 \leq
\langle P_0 , W \rangle \leq \sqrt{n}, $ and the objective of
my question's problem can be written as $\langle P, W\rangle $
where $P_i,P_0, P\in S^{5n\times 5n}$ are given by :
$$ P_i = \left[
\begin{array}{cc}
A_i & 0\\
0& 0 \\
\end{array}
\right], ~ P_0 =
\left(\begin{array}{cc}
I & 0 \\
0 & 0
\end{array} \right), ~ P=
\left(\begin{array}{ccc}
0 & & \\
& \left(\begin{array} {cc} 0 & \\
& \frac{1}{\eta} I \end{array} \right) & \\
& & \left(\begin{array}{cc} I & \\
& 0
\end{array} \right) \end{array}
\right),
$$
Thus, my question's problem can be written as the following SDP problem:
$$
\begin{eqnarray} & \min & \left\langle
P,
W \right\rangle \\
& \textrm{s.t.} & \langle E^{(i, ~n+j)}, W \rangle =0, ~~i = 1,
..., n, j=1,...,
4n, \\
& & \langle E^{(n+i, ~3n+j)}, W \rangle =0, ~~i,j = 1, ..., 2n, \\
& & \langle E^{(n+i, ~n+j)}, W \rangle = 0, ~ i=1, ..., n-1, ~j=i+1, ..., n, \\
& & \langle E^{(n+i, ~n+i)}, W \rangle = 1, ~ i=1, ..., n, \\
& & \langle E^{(i,j)}-E^{(n+i, ~2n+j)}, W \rangle =0, ~i=1,...,
n-1, ~j=i+1,
..., n, \\
& & \langle E^{(j,i)}-E^{(n+j, ~2n+i)}, W \rangle =0, ~i=1,...,
n-1, ~j=i+1,
..., n, \\
& & \langle 2 E^{(i,i)}-E^{(n+i, ~2n+i)}, W \rangle =0, ~~ i =1,
..., n, \\
& & \langle E^{(n+i,2n+j)}-E^{(3n+i, ~4n+j)}, W \rangle =0, ~~ i,j=1, ..., n,
\\
& & \langle E^{(4n+i, ~4n+j)}- E^{(2n+i, ~2n+j)}, W \rangle =0,
~~i=1,..., n-1,~ j =i+1, ..., n , \\
& & \langle E^{(4n+i, ~4n+i)}- E^{(2n+i, ~2n+i)}, W \rangle
=\varepsilon, ~~i=1, ..., n , \\
& & \left\langle P_i,
W \right\rangle = 0, ~~ i=1, ..., m, \\
& & 1 \leq \langle P_0 , W \rangle \leq \sqrt{n},
\\
& & W \succeq 0
\end{eqnarray}
$$
which is of the
form ($P'$). So, its dual problem is given by :
\begin{eqnarray*} & \max &
\sum_{i=1}^n \alpha_i+ \sum_{i=1}^n \varepsilon \beta_i + t_1+ \sqrt{n} t_2 \nonumber \\
& \textrm{s.t.}& \nonumber \\
& &
\sum_{i=1}^n\sum_{j=1}^{4n} \rho_{ij} E^{(i, n+j)} + \sum_{i,j=1}^{2n} \rho'_{ij} E^{(n+i, 3n+j)}
+ \sum_{i=1}^{n-1}\sum_{ j=i+1 }^n \rho''_{ij} E^{(n+i, n+j)}
\nonumber \\
& & + \sum_{i=1}^n \alpha_i E^{(n+i, n+i)} + \sum_{i=1}^{n-1}\sum_{ j=i+1 }^n \left[ \xi_{ij} (E^{(i,j)}-E^{(n+i, 2n+j)})
+ \xi'_{ij} (E^{(j,i)}-E^{(n+j, 2n+i)}) \right] \\
& & + \sum_{i=1}^{n} \eta_{i}
(2E^{(i,i)}-E^{(n+i, 2n+i)})
+ \sum_{i,j=1 }^{n} \theta_{ij} (E^{(n+i,2n+j)}-E^{(3n+i,
4n+j)}) \nonumber\\
& & + \sum_{ i=1}^{n-1}\sum_{ j=i+1 }^{n} \theta'_{ij} (E^{(4n+i,
4n+j)}- E^{(2n+i,2n+j)}) + \sum_{i=1 }^{n} \beta_i (E^{(4n+i,
4n+i)}- E^{(2n+i,2n+i)}) \nonumber\\
& & + \sum_{i=1}^m y_i P_i +t_1 P_0+t_2 P_0 \preceq P, \nonumber\\
& & t_1\geq 0, ~ t_2\leq 0. \nonumber
\end{eqnarray*}
By the structure of $ P, P_0 , E^{(\cdot,\cdot)}$'s
and $P_i$'s, the above problem can be written as
\begin{eqnarray} & ~~~\max &
\sum_{i=1}^n \alpha_i+ \sum_{i=1}^n \varepsilon \beta_i +
t_1+\sqrt{n} t_2 ~~\left( = \textrm{tr}(\Phi) -\varepsilon
\textrm{tr}(Q) + t_1+\sqrt{n} t_2\right)
\nonumber \\
&\textrm{ s.t.}& \nonumber \\
& &
\left(
\begin{array}{ccccc}
V+V^T +\sum_{i=1}^m y_i A_i+(t_1+t_2)I & U_1 & U_2 & U_3 & U_4 \\
U_1^T & \Phi & \Theta-V & U_5 & U_6 \\
U_2^T & \Theta^T-V^T & Q-\frac{1}{\eta}I & U_7 & U_8 \\
U_3^T & U_5^T & U_7^T & -I & -\Theta \\
U_4^T & U_6^T & U_8^T & -\Theta^T & -Q \\
\end{array}
\right) \preceq 0, \\
& & t_1\geq 0, ~ t_2\leq 0, \nonumber
\end{eqnarray}
where $\alpha_i$ and $-\beta_i$ are the diagonal entries of
$\Phi$ and $Q$, respectively.
I hop you enjoy reading the answer, Personally it was really enjoyable to read this Zhao's article.