Let us consider the following semidefinite program
\begin{align} \underset{X_{t}, \Omega_t, \Pi}{\text{minimize}} & \quad \frac{1}{T+1} \sum_{t=0}^{T} \text{Tr} (X_t)\\\\ \text{subject to} & \quad \begin{bmatrix} X_{t} & L_t \\ L_t^{\text{T}} & \Omega_{t} \end{bmatrix} \succeq 0, \quad 0 \leq t\leq T, \\\\ & \quad \begin{bmatrix} C_{t+1}^{\text{T}} \Pi C_{t+1} - \Omega_{t+1} + \Xi_{t} & \Xi_{t} A_{t}\\ A_{t}^{\text{T}} \Xi_{t} & \Omega_{t} + A_{t}^{\text{T}} \Xi_{t} A_{t} \end{bmatrix} \succeq 0, \quad 0 \leq t \leq T-1, \\\\ & \quad \begin{bmatrix} I_{p_{i}}/\alpha_{i}^{2} + V_i^{-1} & E_{i}^\text{T}\\ E_{i} & V-V \Pi V \end{bmatrix}\succeq0,\;\; 1 \leq i\leq n. \end{align}
What is its dual? If someone can provide a theoretical process to find it, that will be very helpful. How do I start deriving a dual for a SDP problem? Can you point me to some references please? Thanks.