The idea for $$\frac{n^r+b_{r-1}n^{r-1}+\cdots+b_1\cdot n}{n!},$$ we can set this to $$\frac{n(n-1)\cdots(n-r+1)+a_{r-1}\cdot n(n-1)\cdots(n-r+2)+\cdots+a_2n(n-1)+a_1\cdot n+a_0}{n!}$$
$$\frac1{(n-r)!}+\frac{a_{r-2}}{(n-r+1)!}+\frac{a_1}{(n-2)!}+\frac{a_1}{(n-1)!}+\frac{a_0}{(n)!}$$
where the arbitrary constants $a_is,0\le i\le r-2$ can be found comapring the coefficients of the different powers of $n$
Here let $$\frac{n^2}{n!}=\frac{a_0+a_1n+a_2n(n-1)}{n!}=\frac{a_0}{n!}+\frac{a_1}{(n-1)!}+\frac{a_2}{(n-2)!}$$
$$\implies n^2=a_0+n(a_1-a_2)+a_2n^2$$
$$\implies a_2=1,a_1-a_2=0\iff a_1=a_2,a_0=0$$
So, we have $$\sum_{n=0}^{\infty}\frac{n^2}{n!}=\sum_{n=0}^{\infty}\frac1{(n-1)!}+\sum_{n=0}^{\infty}\frac1{n!}=\sum_{n=1}^{\infty}\frac1{(n-1)!}+\sum_{n=0}^{\infty}\frac1{n!}$$ as $\displaystyle\frac1{(-1)!}=0$
Now, observe that each summand is $e$(exponential 'e')