Calculating the sum of $\sum\frac{n^2-2}{n!}$
I want to calculate the sum of $\sum_{n=0}^{+\infty}\frac{n^2-2}{n!}$.
This is what I have done so far:
$$ \sum_{n=0}^{+\infty}\frac{n^2-2}{n!}=\sum_{n=0}^{+\infty}\frac{n^2}{n!}-2\sum_{n=0}^{+\infty}\frac{1}{n!}=\sum_{n=0}^{+\infty}\frac{n}{(n-1)!}-2e$$
And here I don't know how to deal with the $\frac{n}{(n-1)!} $. Any tips?
EDIT: One of the answers recommends to write down the sum as follows:
$$\sum_{n=0}^{+\infty}\frac{n^2-2}{n!}=\sum_{n=0}^{+\infty}\frac{n(n-1)}{n!} + \sum_{n=0}^{+\infty}\frac{n}{n!}-2\sum_{n=0}^{+\infty}\frac{1}{n!}$$
Which equals to:
$$\sum_{n=0}^{+\infty}\frac{n(n-1)}{n!} + \sum_{n=0}^{+\infty}\frac{n}{n!}-2\sum_{n=0}^{+\infty}\frac{1}{n!}=\sum_{n=0}^{+\infty}\frac{(n-1)}{(n-1)!}+\sum_{n=0}^{+\infty}\frac{1}{(n-1)!} -2e$$
But here I have negative factorials. What should I do next? Or can I just say that $\sum_{n=0}^{+\infty}\frac{1}{(n-1)!}=e$?