This was a practice problem I was given.
Show that $\lim_{n \rightarrow \infty} \sqrt[n]{a} =1$.
My argument is as follows: \begin{align} \lim_{n \rightarrow \infty} \sqrt[n]{a} &= \lim_{n \rightarrow \infty} e^{\ln(\sqrt[n]{a})} \\ &= e^{\lim_{n \rightarrow \infty}(\frac{1}{n}) \ln(a)} \\ &= e^{\lim_{n \rightarrow \infty}(0 \cdot \ln(a))} \\ &= e^0 \\ &= 1.\end{align}