How do I prove the $\lim_{n \to \infty} 2^\frac{1}{n}$ is 1. I am only allowed to use the addition, division and multiplication property of limits, and the sqeeuze theorem. Specifically, the theorems I am allowed to use are
Define: $\lim_{n \to \infty} a_n = a$, $\lim_{n \to \infty} b_n = b$
- $\lim_{n \to \infty} (a_n + b_n) = a + b$
- $\lim_{n \to \infty} (a_n b_n) = ab$
- $\lim_{n \to \infty} (\frac{a_n}{b_n}) = \frac{a}{b}$
- if $\forall n\in \mathbb N: a_n \leq b_n \leq c_n $ and $\lim_{n \to \infty} a_n$ = $\lim_{n \to \infty} c_n $ = $C$, then $\lim_{n \to \infty} b_n = C$
With only these 4 theorems, I am quite stuck in thinking of how to apply them for limits involving exponents.