$x_1=1$, $x_2=2$, $x_n=n\cdot x_{n-1}+\frac{n(n-1)}{2}x_{n-2}$
Thanks to Barry Cipra's suggestion, now I have obtained the solution for $x_n$:
$x_n=\frac{n!}{\sqrt{3}}((\frac{1+\sqrt{3}}{2})^n-(\frac{1-\sqrt{3}}{2})^n)$
$x_1=1$, $x_2=2$, $x_n=n\cdot x_{n-1}+\frac{n(n-1)}{2}x_{n-2}$
Thanks to Barry Cipra's suggestion, now I have obtained the solution for $x_n$:
$x_n=\frac{n!}{\sqrt{3}}((\frac{1+\sqrt{3}}{2})^n-(\frac{1-\sqrt{3}}{2})^n)$
But I still can not find a close form solution for it.
– Chaos Mage Feb 11 '14 at 09:32