In this game, I flip M fair coins and my opponent flips N coins. If I get more heads from my coins than my opponent, I win, otherwise I lose. I wish to know the probability that I win the game.
I came to this:
$$P(victory) = \sum\limits_{i=1}^M \left(\binom{M}{i}\left(\frac{1}{2}\right)^i\left(\frac{1}{2}\right)^{M-i} \times \sum\limits_{j=0}^{i-1} \left(\binom{N}{j}\left(\frac{1}{2}\right)^j\left(\frac{1}{2}\right)^{N-j} \right) \right)$$
My questions would be: Is the above formula correct? And can a closed form formula exist, and if not, is there a simple proof?